Page 366 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 366

Unit 22: Solution of Laplace Differential Equation




                                                                                                Notes
                                             2
                    1  d     d
                          sin       ( n n  1)  2   = 0
                   sin d      d           sin
                                 1   d     2 d              2
                             =          sin         ( n n  1)  2  0
                                sin d        dµ           1 µ

                                 2sin cos d       d  d               2
                             =                sin           ( n n  1)  2   0
                                   sin    dµ      d  dµ           1 µ

                                  2 d 2     d              2
                             = sin     2  2µ      ( n n  1)  2    0
                                     dµ     dµ          (1 µ  )

                                    2 d 2    d              2
          or                    (1 µ  )  2  2µ     ( n n  1)  2    0               ...(9)
                                      dµ     dµ          (1 µ  )

          It is clear that   will be a function of µ i.e.
                                  z
                                 ( ) or  (cos )
          Hence the solution of Laplace equation is

                           V = (A r  n  B r  (n  1) ) (cos ) A e i  B e  i        ...(10)

          where the solution of (µ) is

                             = A e a   B e  i                                     ...(11)
          For   2  m  2 ,  integer m, the solution is satisfied by associated Legendre polynomial  P n m ( )  as
                                                                                  x
          shown below:
          Consider the Legendre equation

                                 2
                               2 d y   dy
                          (1 x  )  2  2x    ( n n  1)y = 0                        ...(12)
                                dx     dx
          Differentiating it m times and putting

                                                       m
                                                      d y
                                                   =    m                         ...(13)
                                                      dx
          We have

                                               m
                         2
              d m  (1 x 2 d y  2  d  m  x dy  ( n n  1)  d y  = 0
                       )
              dx m      dx 2  dx m  dx        dx m
          or
                                                                      m
                                                         m
               2 d m  2 y  d m  1       dmy     d m  1 y  d y        d y
          (1 x  )  m  2  2.mx  m  y m (m  1)x  m  2x  m  1  2  m  ( ) n (n  1)  m  0
                                                            m
                dx         dx            dx     dx      dx           dx





                                           LOVELY PROFESSIONAL UNIVERSITY                                   359
   361   362   363   364   365   366   367   368   369   370   371