Page 414 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 414

Unit 23: Wave and Diffusion Equations by Separation of Variable




          Let the solution of the heat equation                                                 Notes
                u   2  2 u
                   c    ,                                                         …(1)
                 t   dx 2
          is of the form

                   t
                 x
               u ( , )  X ( ) ( )                                                 …(2)
                         T
                           t
                        x
          where X is a function of x only and T is that of t only.
          Substituting in (1), we get
                           2
                  2
                1 d X   1 d T
                                                                                  …(3)
                       2
               X dx 2  c T dt 2
          Since L.H.S. is a function of x only and R.H.S. is a function of t only, both sides will be equal if
          they are constant i.e. equal to   2
                  2
                1 d X  1 dT     2
                       2
               X dx 2  c T  dt
          Thus

                2
               d X    2 X  0
                dx 2
          and
               dT   2  2
                   c   T  0                                                        ...(4)
                dt
          The solutions of equations (4) are

                                        2 2
                                 ;
               X   A cos x B sin x T  Ce  e  t                                    …(5)
          using boundary conditions (A ), the solution (5) gives
                                  1
               X (0) 0  A  and  ( ) 0 B sin L  0                                  …(6)
                             X
                               L
          Now B   0  hence
               sin L  0
          or    L  n  ,  for n = 1, 2, 3, …                                       …(7)

                e
               i . .  n  /L
          Hence for each value of n

                            n     c n  t /L 2
                                   2 2 2
                   t
                  x
               u n ( , )  B n  sin  x e                                           …(8)
                             L
          are solution of equation (i) satisfying the given boundary conditions (A ). So the general solution
                                                                  1
          is
                                            2 2 2
                                             c n t
                                      n x     2
                   t
                            t
                           x
               u ( , )  u n ( , )  B n  sin  e  L                                 …(9)
                 x
                      n  1     n  1    L
                                           LOVELY PROFESSIONAL UNIVERSITY                                   407
   409   410   411   412   413   414   415   416   417   418   419