Page 425 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 425

Differential and Integral Equation




                    Notes          Substituting this in (viii) we have
                                                                 1            x
                                                                       y
                                                                        t
                                                          y ( ) xa  (1 t ) ( )dt a  (x t ) ( )dt  = 0
                                                            x
                                                                                     t
                                                                                    y
                                                                 0            0
                                                                1             x
                                   or                     y ( ) a x (t  1) ( )dt a  (x t ) ( )dt = 0
                                                            x
                                                                                     t
                                                                       y
                                                                                    y
                                                                        t
                                                                0             0
                                                  x             1             x
                                                                       y
                                                          t
                                                                        t
                                                                                    y
                                              x
                                                         y
                                                                                     t
                                   or        y ( ) a x (t  1) ( )dt a x (t  1) ( )dt a  (x t ) ( )dt  = 0
                                                  0             x             0
                                                               x             1
                                                                      y
                                                                        t
                                                           x
                                                                                    y
                                                                                     t
                                   or                     y ( ) a t (x  1) ( )dt a x (t  1) ( )dt  = 0
                                                               0             x
                                   Taking
                                                                                ( t x  1) , t  x
                                                                     K(t, x) =
                                                                                ( x t  1) , t  x
                                   So we get
                                                               1
                                                                   x
                                                                       t
                                                                     y
                                                           x
                                                         y ( ) a K ( , ) ( )dt = 0                        ...(ix)
                                                                  t
                                                               0
                                          Example 2: Express the differential equation
                                                                2
                                                               d y ( )  y ( ) = f(x)                       ...(1)
                                                                  x
                                                                        x
                                                                dx 2
                                   into an integral equation. Here y, y and f are continuous differentiable on the interval 0 < x < 1
                                   with the boundary conditions.
                                                                       y(0) = 0 = y(1)
                                   Following the method 2, let us integrate (1) from 0 to x, we have
                                                               x          x       x
                                                                            u
                                                                                    u
                                                                   u
                                                                y  ( )du   y ( )du  f  ( )du = 0
                                                               0          0       0
                                                                          x       x
                                                                x
                                                                                     u
                                   or                         y  ( ) y  (0)  y ( )du  f ( )du = 0          ...(2)
                                                                            u
                                                                          0       0
                                   Integrating once again, we have
                                                x               x            x
                                                 y  ( )dx y  (0)x  (x u ) ( )du  (x u ) ( )du = 0
                                                                       u
                                                   x
                                                                                     u
                                                                                   f
                                                                      y
                                                0               0            0
          418                               LOVELY PROFESSIONAL UNIVERSITY
   420   421   422   423   424   425   426   427   428   429   430