Page 426 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 426

Unit 24: Integral Equations and Algebraic System of Linear Equations




                                                                                                Notes
                                       x            x
                                                           f
                                                            u
          or          y ( ) y (0) y  (0)x  (x u ) ( )du  (x u ) ( )du = 0
                                             y
                        x
                                               u
                                       0            0
                                       x            x
                                                            u
                                                          f
          or               y ( ) y  (0)x  (x u ) ( )du  (x u ) ( )du = 0           ...(3)
                                               u
                            x
                                             y
                                       0            0
          To find the value of y (0), put x = 1 in equation (3), we get
                                       1            1
                                               u
                                                            u
                             0 y  (0).1  (1 u ) ( )du  (1 u ) ( )du = 0
                                                          f
                                             y
                                       0            0
              so y (0) is given by
                                 1            1
                         y (0) =  (1 u ) ( )du  (1 u ) ( )du                       ...(4)
                                         u
                                       y
                                                    f
                                                      u
                                 0            0
          Substituting this value of y (0) in equation (3) and rearranging terms we get
                          1              x            1            x
                                   u
                                 y
                                                                           u
                                                             f
                                                 u
                  y(x) =   x (1 u ) ( )du  (x u ) ( )du  (1 u ) ( )du  (x u ) ( )du
                                                              u
                                                                          f
                                               y
                          0              0            0            0
                          x              x             1             x
                                   u
                                                 u
                                               y
                                                              y
          or      y(x) =   x (1 u ) ( )du  (x u ) ( )du  x (1 u ) ( )du  (x u ) ( )du
                                                                u
                                 y
                                                                            f
                                                                             u
                          0              0             x             0
                         x             1
                                             f
                                               u
                                  u
                                f
                          x (1 u ) ( )du  (1 u ) ( )xdu  0
                         0             x
          Simplifying the above equation we have
                       x              1            x              1
                                                            u
                               u
                                                           f
                             y
                       y(x) =   u (1 x ) ( )du  x (1 u ) ( )du  ( u x  1) ( )du  x (1 u ) ( )du  0  ...(5)
                                            y
                                                                         f
                                              u
                                                                          u
                       0              x            0              x
          Defining
                           ( u x  1) u  x
                K(u, x) =
                           ( x u  1) u  x
          We write equation (4) as
                           1             1
                  y(x) =    K ( , ) ( )du  K ( , ) ( )dx
                                x
                                   u
                                  y
                                             x
                              u
                                                 u
                                           u
                                               f
                           0             0
          Knowing K(u, x) and f(u), we know the second integral on the right hand side. Let us put
                           1
                                x
                              u
                            K ( , ) ( )du =  (x)                                   ...(6)
                                   u
                                 f
                           0
                                           LOVELY PROFESSIONAL UNIVERSITY                                   419
   421   422   423   424   425   426   427   428   429   430   431