Page 436 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 436

Unit 25: Volterra Equations and L  Kernels and Functions
                                                                                            2



          where the Kernel K(x, u) and the function f(x) belong to the class L . In the last sections we had  Notes
                                                                2
          seen that the solution is given by the formula
                              x
                                   u
                         x
                                       f
                   x
                                         u
                  y ( )  f ( )  H ( , , ) ( )du                                    ...(2)
                                 x
                              0
          where the resolvent Kernel H(x, u,  ) is given by the series of iterated Kernels
                                       u
                     x
                   H ( , , )    v  K  v  1  ( , )                                  ...(3)
                                     x
                       y
                            v  0
          The series (3) converges almost everywhere. H(x, u,  ) satisfies the integral equation
                                     x
                                         z
                    x
                           x
                             u
                     u
                                       x
                                             z
                  K ( , )  H ( , , )  K ( , ) H ( , , )dz
                                               u
                                    y
                                    x                                              ..(4)
                                             K
                                         z
                                               z
                                                u
                                     H ( , , ) ( , )dz
                                       x
                                    y
          Proof: with the help of the Schwarz inequality, we first find
                                             2
                            x
                  K  2 2 ( , )  K ( , u 1 ) (u 1 , )du 1
                                   K
                              x
                      u
                                       u
                    x
                           y
                           x  2        x  2
                                  )
                              x
                                             y
                            K  ( , u du 1  k  (u 1 , )du 1
                                 1
                           y           y
                           h           h
                                                      x
                                                           y
                               x
                                             u
                                  K  2 ( , u 1 )du 1  K 2 (u 1 , ) du 1  A 2 ( ) B 2 ( ),
                           0          0
          and successively
                           x          x
                      u
                  K  2 ( , )  K  2 ( , u  )du  K 2 (u  , )du
                              x
                    x
                                             u
                   3             1   1   2  1   1
                           y          y
                           h          x
                                            )
                              x
                                               u
                            K  2 ( , u 1 )du 1  A 2 (u B 2 ( )du 1
                                           1
                           0          y
                                   x
                          A  2 ( )B 2 ( )  A  2 (u 1 )du 1
                                 u
                             x
                                   y
                    x          x
             x
                                      u
          K  2 4 ( , )  K  2 ( , u 1 )du 1  K 3 2 (u 1 , )du 1
                       x
               u
                   y           y
                    h          x              x
                                     )
                       x
                                        u
                    K  2 ( , u 1 )du 1  A 2 (u B 2 ( )du 1  A 2 (u 2 )du 2
                                    1
                   0           y             u
                            x         x
                     x
                   A  2 ( )B 2 ( )  A 2 (u 1 )du 1  A 2 (u 2 )du 2
                         u
                            y         u
                                      
          In general, we can write
                                  u
                                        u
                              x
                        u
                      x
                  K  2  ( , )  A 2 ( )B  2 ( ) F  ( , )               (n = 1, 2, 3, ...) ...(5)
                                      x
                   n  2              n
          where
                          x                  x
                                                   F
                                                       u
                                                         dz
                  F  ( , )  A 2 (u  )du  ,F  ( , )  A 2  (u  ) (u  , ) ,...
                                        u
                      u
                                      x
                    x
                   1           1  1  2           1  1  1
                          y                 u
          or  generally
                          x
                              z
                                    z
                                     u
                    x
                  F n ( , )  A 2  ( ) F n  1  ( , ) ,                   (n = 2, 3, ...) ...(6)
                      u
                                       dz
                          y
                                           LOVELY PROFESSIONAL UNIVERSITY                                   429
   431   432   433   434   435   436   437   438   439   440   441