Page 432 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 432

Unit 25: Volterra Equations and L  Kernels and Functions
                                                                                            2



                              k                                                                 Notes
                    x
                                   u
                  y 1 ( )  f  ( )  K ( , ) ( )du
                                     f
                         x
                                 x
                                      u
                              0
          Continuing in this manner we obtain an infinite sequence of functions
                              x
                         x
                    x
                                  y
                  y  ( ), y  ( ), y  ( )...... ( )......                           ...(4)
                                     x
                   0    1    2     n
          satisfying the recurrence relations
                              k
                                        u
                         x
                                   u
                                 x
                    x
                  y n ( )  f ( )  K ( , ) y n  1 ( )du ,              (n = 1, 2, 3....)  ...(5)
                              0
          Setting
                                    x
                    x
                           x
                  y n ( ) y  n  1 ( )  n  n ( )                       (n = 1, 2, 3....)  ...(6)
          and putting
                   (x) = f(x), we get
                   0
                        n
                               x
                  y n ( )  v  2  ( )                                               ...(7)
                    x
                        v  0
                         x
          Also     n ( )  K ( , )  n  1 ( )du                               (n= 1, 2, 3, ...)
                                    u
                            x
                              u
                     x
                         0
                         t
                                f
                    x
                             u
                                 u
                            x
          Hence    1 ( )  K ( , ) ( )du
                         0
                         t          u 1
                               )
                                             u
                    x
                                          u
                                            f
                            x
          and      2 ( )  K ( , u du 1  K (u 1 , ) ( )du
                              1
                         0          0
          This repeated integral be considered as a double integral over the triangular region indicated in
          the figure 25.1 thus interchanging the order of integration, we obtain
                                            Figure 25.1
                              X
                               x
                              O                          x       Y

                         x       x
                            u
                                        K
                    ( )   f  ( ) du  K ( , u  ) (u  , )du
                                             u
                                   x
                    x
                   2                  1    1    1
                         0      u
                         x
                    x
                              u
                                  u
                                f
                             x
          or       2 ( )  K  2 ( , ) ( )du
                         0
                                           LOVELY PROFESSIONAL UNIVERSITY                                   425
   427   428   429   430   431   432   433   434   435   436   437