Page 433 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 433

Differential and Integral Equation




                    Notes                          x
                                               u
                                             x
                                                           K
                                                               u
                                   where  K 2 ( , )  K ( , u 1 ) (u 1 , )du 1
                                                      x
                                                   u
                                   Similarly, we find in general
                                                  x
                                                           u
                                                     x
                                                         f
                                             x
                                            ( )   K  ( , ) ( )du      (n = 1, 2, 3, ....)                  ...(8)
                                                       u
                                           n        n
                                                 0
                                   Where the integrated Kernels are defined as
                                          K (x, u)   K(x, u), K (x, u), K (x, u)......
                                           1             2      3
                                   are defined by the recurrence formula
                                                     x
                                                           )
                                                u
                                              x
                                          K n  1 ( , )  K ( , u K n (u 1 , )du 1              (n = 1, 2, 3, ....) ...(9)
                                                       x
                                                                 u
                                                          1
                                                    0
                                   Moreover, it is easily seen that we also have
                                                     x
                                                            )
                                                                  u
                                                u
                                              x
                                                         x
                                          K   ( , )   K  ( , u K  (u  , )du
                                           n  1        1   1  n  1    1
                                                     0
                                                     x                                                     ...(9)
                                                             )
                                                                   u
                                                      K  ( , u K  (u 1 , )du 1  r 0  s 0  n  1
                                                         x
                                                            1
                                                     0  0 r    0 s
                                   where r  = 1, s  = n.
                                         0    0
                                                     x        x
                                                                    ,
                                                u
                                              x
                                                                              u
                                                         x
                                                                      )
                                   Now    K n  1 ( , )  K 1 ( , u 1  )  K 1 (u u K n  1  (u 2  , )du du 1
                                                                   1
                                                                     2
                                                                                 2
                                                     0        u 1
                                   Interchanging the integrals we have
                                                      x             x
                                                                                ,
                                                                           )
                                          K n  1 ( , )  K n  1 (u 2 , )du 2  K 1 ( , u K 1 (u u 2 )du 1
                                                u
                                                              u
                                                                       x
                                              x
                                                                          1
                                                                                1
                                                      0            u 2
                                                      x
                                                       K n  1 (u 2 , ) K 2 ( , u 2 )du 2
                                                              u
                                                                  x
                                                      0
                                                      x
                                                             )
                                                       K 2 ( , u K  n  1 (u 2 , )du 2
                                                          x
                                                                     u
                                                             2
                                                      0
                                   In the same way we get
                                                     x
                                                            )
                                                                    u
                                                u
                                              x
                                          K n  1 ( , )  K 3 ( , u K n  2 (u 2 , )du 2
                                                         x
                                                            2
                                                     0
                                   and so on. So we may write
                                                     x
                                                            )
                                              x
                                                u
                                                                  u
                                                         x
                                          K n  1 ( , )  K r ( , u K s (u 2 , )du 2  where (r = 1, 2,...n, s = n   r + 1)  ...(10)
                                                           2
                                                     0
                                   Now from equation (7)
                                                 n
                                          y n ( )   v  v ( )
                                                       x
                                             x
                                                v  0
                                                 n    x
                                                    v
                                                         x
                                                             f
                                                           u
                                                       K v ( , ) ( )du
                                                              u
                                                     0
                                                v  0
                                                      n    x
                                                  x
                                                                    u
                                                                u
                                                              x
                                                                  f
                                                f  ( )   v  K v ( , ) ( )du
                                                           0
                                                     v  1
                                                      x  n
                                                  x
                                   or     y n ( )  f ( )  K v ( , ) f  ( )du
                                                             x
                                                               u
                                                                   u
                                             x
                                                      0
                                                        v  1
          426                               LOVELY PROFESSIONAL UNIVERSITY
   428   429   430   431   432   433   434   435   436   437   438