Page 71 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 71

Differential and Integral Equation




                    Notes
                                                   1 d  1 d  2tx
                                                                    2 2tx
                                                           e     = t e
                                                   2 dx  2 dx
                                                           2
                                                       1 d   2tx    2 2tx
                                   or                       e    = t e
                                                       2 dx
                                                       1 d  n  2tx
                                                                    n
                                                             e   = t e 2tx
                                                       2 dx
                                   Hence


                                                      1 d  2  2tx      1   1 d 2  n  2tx
                                                 exp     2  e    =            2   e
                                                      4 dx              ! n  4 dx
                                                                    n  0
                                                                      ( 1) n  1 d  2n
                                                                 =               e 2tx
                                                                        ! n  2 dx
                                                                   n  0
                                                                      ( 1) n
                                                                           2n
                                                                 =        t e 2tx  [from (ii)]
                                                                        ! n
                                                                   n  0
                                                                         ( 1) n
                                                                 = e 2tx     t  2n
                                                                           ! n
                                                                      n  0
                                                                         2  (2tx t 2 )
                                                                        t
                                                                    2tx
                                                                 = e  . e  e
                                                1 d 2    1            t  n
                                                                           x
                                   or     exp.            (2 ) n  =     H n ( )
                                                            tx
                                                4 dx  2   ! n          ! n
                                                      n  0         n  0
                                                         n
                                   Equating the coefficient of  t  from the two sides, we have
                                                   1 d 2  1         1
                                                            n
                                             exp.          2 x n  =  H  ( )
                                                                        x
                                                   4 dx  2  ! n      ! n  n
                                                                            1 d  2
                                   or                     H n ( ) = 2 n  exp.     x n .
                                                             x
                                                                            4 dx  2
                                   Self Assessment


                                   5.  Obtain the expression for  H  2 ( )  from generating function  e 2xt t 2 .
                                                                x
                                                             d
                                                                  x
                                   6.  Obtain the expression for   H n ( )  from the generating function   e 2xt t  2 .
                                                             dx
                                   7.  Show that for odd n.
                                                                     H n (0) 0






          64                                LOVELY PROFESSIONAL UNIVERSITY
   66   67   68   69   70   71   72   73   74   75   76