Page 72 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 72

Unit 3: Hermite Polynomials




                                                                                                Notes
                  x
          8.   H 1 ( ) 2xH 0 ( ) is
                          x
               (a)  positive
               (b)  zero
               (c)  negative
               (d)  none of the above


                                                  x
          3.3 The Rodrigue s Formula for  H      ( )
                                                n
          To Prove

                                                2 d n  2
                                              n x
                                  H  n ( ) = ( 1) e  e  x                          ...(i)
                                     x
                                                 dx n
          Proof:

                                                ( ) n
                                               n
          We have                 e  2tx t 2  =  H x  t
                                                ! n
                                           n  0
                                              x
                                                             x
                                                      x
          or                    e  x 2  (t x  ) 2  =  H 0 ( )  t 0  H 1 ( ) t  H 2 ( )  t 2
                                            0!      1!      2!
                                                            x
                                               H x  t   H n  1  ( ) n  1
                                                  ( ) n
                                                 n
                                                              t
                                                  ! n   (n  1)!
          Differentiating both sides, partially with respect to t, n times and then putting t = 0, we have
                                             n
                                   x
                                H n ( )  ! n  e  (t x  ) 2  e x  2
                                   ! n  =    t n                                  ...(ii)
                                                    t  0
          Now let  t x  , i.e., at t  0,x

                t


                             n     2        n
          or                   e  (t x  )  =   e  2
                             t  n            n
                                     t  0
                                                n    2
                                        = ( 1) n   e  x
                                                x n

                                              n d n  x 2
                                        = ( 1)   n  e
                                               dx
                                                 2 d  n  x 2
                                              n
                                                x
                                     x
                                  H  ( ) = ( 1) . e   e                           ...(A)
                                   n                n
                                                  dx




                                           LOVELY PROFESSIONAL UNIVERSITY                                   65
   67   68   69   70   71   72   73   74   75   76   77