Page 147 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 147

Measure Theory and Functional Analysis




                    Notes
                                       (b)    (f g)   f  g
                                             E      E   E


                                       (c)    f  0  f  0 a.e.


                                       (d)  If f   g a.e. then  f  g
                                                          E   E


                                   4.  If f is integrable over E, then show that |f| is integrable over E, and   f  |f|.
                                                                                                E    E

                                   5.  Show that if f is a non-negative measurable function then f = 0 a.e. on E iff   f = 0.
                                                                                                    E

                                   6.  If  f  = 0 and f (x)   0 on E, then f = 0 a.e.
                                          E
                                   11.5 Further Readings




                                   Books       Erwin Kreyszig, Introductory Functional Analysis with Applications, John Wiley &
                                               Sons Inc., New York, 1989
                                               Walter Rudin, Real and Complex Analysis, Third McGraw Hill Book Co., New York,
                                               1987
                                               R.G. Bartle, The Elements of Integration and Lebesgue Measure, Wiley Interscience,
                                               1995



                                   Online links  www.maths.manchester.ac.uk
                                               www.uir.ac.za




























          140                               LOVELY PROFESSIONAL UNIVERSITY
   142   143   144   145   146   147   148   149   150   151   152