Page 285 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 285

Measure Theory and Functional Analysis




                    Notes                                          1
                                   Using the definition of f we have f(x) =   .
                                                                   n
                                   Suppose  y  y  n  M satisfying the condition of the theorem, then


                                          f x  x,y     x y   y  as x e .
                                                        n  n  n      n
                                                                                     1
                                   Thus Riesz representation theorem is valid if and only if  y  n  0 for every n.
                                                                                     n
                                   Hence y  y   M.
                                             n
                                            no y M  such that f(x,y) = (x,y) for every  x H.

                                          the completeness assumption cannot be left out from the Riesz-representation theorem.

                                                                  *
                                                                                     *
                                   Theorem  3:  The  mapping  :H  H   defined  by  :H  H     defined  by   y  fy  where
                                   fy(x) = (x,y) for every  x H is an (i) additive, (ii) one-to-one, (iii) onto, (iv) symmetry, (v) not
                                   linear.
                                   Proof:
                                   (i)  Let us show that   is additive, i.e.,

                                            y  y     y     y  for y ,y  H.
                                             1  2     1     2     1  2
                                       Now from the definition   y  y  f
                                                               1   2  y 1  y 2
                                       Hence for every  x H, we get

                                          f y  y  x  x,y 1  y 2  x,y  1  x,y 2
                                           1  2
                                                                   f y  x  f y  x
                                                   1     2
                                             f      y   y   f   f    y     y
                                             y  y    1   2  y   y     1     2
                                              1  2           1   2
                                   (i)    is one-to-one. Let y ,y 2  H
                                                         1
                                       Then   y =f  and   y =f . Then
                                               1
                                                  y
                                                   1       2  y 2
                                               y =  (y )  f = f y
                                          1
                                                    y
                                                2
                                                     1   2
                                             f  x  = f  x  x H.                                            ...(1)
                                             y  1   y  2
                                             f  x =  x,y and f  x  x,y
                                             y        1    y        2
                                              1             2
                                            from (1), we get
                                             x,y 1  x,y  2  x,y 1  x,y 2  0
                                             x,y  y   0 x H                                                ...(2)
                                                1  2
                                       Choose x = y – y then from (2) if follows that (y – y ,y – y ) = 0
                                                  1   2                        1   2  1   2



          278                               LOVELY PROFESSIONAL UNIVERSITY
   280   281   282   283   284   285   286   287   288   289   290