Page 292 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 292

Unit 27: The Adjoint of an Operator




                                                                                                Notes


             Note  The relation  Tx,y  x,T * y  can be equivalently written as


                  T * x,y  x,Ty  since

                  T * x,y  y,T * x =  Ty,x =  x,Ty =  x,Ty

                  T * x,y  x,Ty .



                 Example: Find adjoint of T if T is defined on   as  Tx  0,x ,x ,... for every x  x n   .
                                                    2
                                                                 2
                                                               1
                                                                                     2
          Let T* be the adjoint of T. Using inner product in   , we have
                                                   2
                  T * x,y = x,Ty
          since  Ty  0,y ,y ,... , we have
                         2
                      1
                  T * x,y  x,Ty =  x  y   Sx,y ,
                                    n+1  n
                                 n=1
          where S x  x ,x ,...
                      2
                         3
          Hence T * x,y  Sx,y  for every x in   .
                                          2
          Since T* is unique, T*=S so that we have

                  T * x  x ,x ,x ,... .
                          2  3  4
          Theorem 2: Let H be the given Hilbert space and T* be adjoint of the operator T. Then T* is a
          bounded linear transformation and T determine T* uniquely.
          Proof: T* is linear.

          Let  y ,y 2  H and  ,  be scalars. Then for  x H, we have
               1
                  x,T *  y  y     Tx, y   y
                         1   2         1   2

          But     Tx, y  1  y 2  Tx,y  1  Tx,y 2


                                             Tx,y  1  x,T * y 2

                                             x, T * y 1  x, T * y .
                                               2

          Hence for any  x H,
                  x,T *  y  y     x, T * y  x, T * y
                         1   2          1         2





                                           LOVELY PROFESSIONAL UNIVERSITY                                   285
   287   288   289   290   291   292   293   294   295   296   297