Page 293 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 293

Measure Theory and Functional Analysis




                    Notes
                                                                           x, T * y  1  T * y .
                                                                       2
                                     T* is linear.

                                   T* is bounded
                                   for any y H, let us consider

                                               2
                                           T * y  T * y,T * y
                                                         TT * yy

                                                         TT * y  y using Schwarz inequality

                                                         T  T * y  y


                                             2
                                   Hence  T * y  T  T * y  y  0                                            ...(1)
                                   If  T * y  0 then  T * y  T y  because  T y  0

                                   Hence let  T * y  0.

                                   Then we get from (1)

                                           T * y  T  y .

                                   since T is bounded,

                                           T  M so that

                                           T * y  M y  for every y H.

                                     T* is bounded.
                                     T* is continuous.
                                   Uniqueness of T*.

                                   Let  if  T*  is  not  unique,  let  T’  be  another  mapping  of  H  into  H  with  property
                                    Tx,y = x,T * y   x,y H.

                                   Then we have

                                           Tx,y = x,T'y                                                    ...(2)

                                   and     Tx,y = x,T * y                                                  ...(3)

                                   From (2) and (3) it follows that

                                           x,T'y = x,T * y  x,y H


                                           x, T'y T * y =0




          286                               LOVELY PROFESSIONAL UNIVERSITY
   288   289   290   291   292   293   294   295   296   297   298