Page 305 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 305

Measure Theory and Functional Analysis




                    Notes                 T  O i.e. zero operator.
                                  This completes the proof of the theorem.
                                  Theorem 5: If T is an operator on a Hilbert space H, then

                                           Tx,x  0  x in H  T  O.

                                  Proof: Let T = O. Then for all x in H, we have

                                           Tx,x  Ox,x   0,x  0.

                                  Conversely, let Tx,x  0  x,y H.  Then we show that T is the zero operator on H.

                                  If  ,  any two scalars and  x,y are any vectors in H, then

                                           T  x  y , x  y    Tx   Ty, x  y


                                                                                T x , x  y  T y , x  y


                                                                                Tx,x  Tx,y  Ty,x  Ty,x


                                                             2                          2
                                                                                Tx,x  Tx,y  Ty,x  Ty,x
                                                        2        2
                                     T  x  y , x   y     Tx,x     Ty,y     Tx,y     Ty,x                   ...(1)

                                  But by hypothesis  Tx,x  0 x H.
                                     L.H.S. of (1) is zero, consequently the R.H.S. of (1) is also zero. Thus we have

                                             Tx,y     Ty,x  0                                              ...(2)

                                  for all scalars  ,  and  x,y H.

                                  Putting   1,  1 in (2) we get

                                          Tx,y   Ty,x  0                                                   ...(3)
                                  Again putting   i,  1 in (2) we obtain

                                          i Tx,y  i Ty,x  0                                                ...(4)

                                  Multiply (3) by (i) and adding to (4) we get

                                          2i Tx,y  0 x,y H

                                          Tx,y  0 x,y H

                                          Tx,Tx   0 x,y H                                   (Taking y = Tx)

                                          Tx 0 x,y H





          298                               LOVELY PROFESSIONAL UNIVERSITY
   300   301   302   303   304   305   306   307   308   309   310