Page 305 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 305
Measure Theory and Functional Analysis
Notes T O i.e. zero operator.
This completes the proof of the theorem.
Theorem 5: If T is an operator on a Hilbert space H, then
Tx,x 0 x in H T O.
Proof: Let T = O. Then for all x in H, we have
Tx,x Ox,x 0,x 0.
Conversely, let Tx,x 0 x,y H. Then we show that T is the zero operator on H.
If , any two scalars and x,y are any vectors in H, then
T x y , x y Tx Ty, x y
T x , x y T y , x y
Tx,x Tx,y Ty,x Ty,x
2 2
Tx,x Tx,y Ty,x Ty,x
2 2
T x y , x y Tx,x Ty,y Tx,y Ty,x ...(1)
But by hypothesis Tx,x 0 x H.
L.H.S. of (1) is zero, consequently the R.H.S. of (1) is also zero. Thus we have
Tx,y Ty,x 0 ...(2)
for all scalars , and x,y H.
Putting 1, 1 in (2) we get
Tx,y Ty,x 0 ...(3)
Again putting i, 1 in (2) we obtain
i Tx,y i Ty,x 0 ...(4)
Multiply (3) by (i) and adding to (4) we get
2i Tx,y 0 x,y H
Tx,y 0 x,y H
Tx,Tx 0 x,y H (Taking y = Tx)
Tx 0 x,y H
298 LOVELY PROFESSIONAL UNIVERSITY