Page 302 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 302

Unit 28: Self Adjoint Operators




               If T* is an adjoint operator T on H then we know from the definition that        Notes
                Tx,y   x,T * y   x,y H .

               If T is self-adjoint, then T = T*.
                 Tx,y   x,Ty   x,y H.

               Conversely, if  Tx,y  x,Ty   x,y H then we show that T is self-adjoint.

               If T* is adjoint of T then (Tx, y) = (x, T*y)

                  We have  x,Ty  x,T * y
                  x, T  T * y  0  x,y  H

               But since x  0  T  T * y  0  y  H
                 T = T*

                 T is self adjoint.
          (iii)  For any  T  H ,T T * and T * T are self adjoint. By the property of self-adjoint operators,
               we have

                T T * *  T * T * *

                                T * T

                                T T *

                  T T * *  T T*,

               and  T * T *  T * T * *  T * T

                  T * T * *  T * T.
               Hence  T  T * and T * T are self adjoint.

          Theorem 1:  If  A  is a sequence of self-adjoint operators  on  a Hilbert  space H  and if  A n
                        n
          converges to an operator A, then A is self adjoint.
          Proof: Let  A  be a sequence of self adjoint operators and let  A n  A.
                     n
          A n is self adjoint   A * n  A  for n 1,2,...
                                 n
          We claim that  A A *

          Now  A A* A A    n  A n  A * n  A * A *
                                       n
             A A *   A A      A   A *   A   A *
                          n    n    n     n

              A n  A  A n  A n  A n  A                  A * n  A n

            A   A   0  A   A
              n         n



                                           LOVELY PROFESSIONAL UNIVERSITY                                   295
   297   298   299   300   301   302   303   304   305   306   307