Page 228 - DMGT209_QUANTITATIVE_TECHNIQUES_II
P. 228

Unit 11: Multiple Regression and Correlation Analysis



                                                                                                  Notes
                                             Figure 11.3

                                      Y                 dY i
                                                      c +
                                                     =
                                                       = +
                                                   X ci  Y    a   bX  i
                                                      ci
                                      Y



                                      O          X           X


                                    X   X  Y   Y 
                                      i
                                            i
            or               d =             2                                     .... (17)
                                       Y   Y 
                                        i
                                   x y  i
                                     i
            or               d =      2                                            .... (18)
                                    y  i
                                  1
                                      X   X  Y   Y 
                                              i
                                        i
                                  n                 Cov X,Y 
                               =     1     Y  2       2 Y                       .... (19)
                                          i
                                     n   Y 
                                  n  X Y    X  i  Y i 
                                       i
                                        i
             Also            d =         2       2                                 .... (20)
                                     n  Y   Y i 
                                         i
            This expression is useful for calculating the value of d. Another short-cut formula for the
            calculation of d is given by

                                   
                                  h    u v    u i  v i  
                                    n
                                         i
                                          i
                             d =                  2                              .... (21)
                                  k   n  v   v    
                                            2
                                           i     i    
                     X  A         Y   B
                                    i
            where  u   i   and  v 
                                i
                   i
                       h             k
            Consider equation (19)
                                  Cov X,Y   r  Y   X
                                              X
                             d =      2      2    r                             .... (22)
                                       Y      Y    Y
            Substituting the value of c from equation (15) into line of regression of X on Y we have
                           X   = X dY dY or     X   X   Y  d    Y         .... (23)
                             Ci            i      Ci       i
                                      X
            or         X   X  =  r     Y   Y  Y                            .... (24)
                                        i
                        Ci
            Remarks: It should be noted here that the two lines of regression are different because these
            have been obtained in entirely two different ways. In case of regression of Y on X, it is assumed




                                             LOVELY PROFESSIONAL UNIVERSITY                                  223
   223   224   225   226   227   228   229   230   231   232   233