Page 54 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 54

Unit 3: Linear Programming Problem – Simplex Method




               (c)  The same multiple should be used to other elements in the row to adjust the rest of  Notes
                    the elements. But, the adjusted key row elements should be used for deducting out
                    of the earlier iteration row.
               (d)  The same iteration is  continued until  the  values  of Z  –  C   become either  '0'  or
                                                                 j   j
                    positive.
          5.   Find the 'Z' value given by C , X .
                                      B  B
          3.1.1  Maximisation Cases


                 Example:

          Maximise                ‘Z’ = 5x  + 3x                    [Subject to constraints]
                                         1   2
                               x  + x   2
                                1   2
                              5x  + 2x   10
                                1   2
                              3x  + 8x   12
                                1   2
          Where,                 x , x   0                    [Non-negativity constraints]
                                 1  2
          Solution:

          Step 1: Conversion of inequalities into equalities adding slack variables
                            x  + x  + x  = 2
                             1  2   3
                          5x  + 2x  + x  = 10
                            1   2   4
                          3x  + 8x  + x  = 12
                            1   2   5
                Where, x , x  and x  are slack variables.
                       3  4    5
          Step 2: Fit the data into the matrix form AX = B

                                  Y 1  Y 2  S 1  S 2  S  3     x 1 
                                   x  x  x  x  x      x  
                                   1  2  3  4   5      2    2  
                                                               
                              A     1  1  1  0  0   X     x 3   B   10 
                                                               
                                   5  2  0  1  0      x 4    12 
                                                       
                                   3  8  0  0  1      x 5 
          Step 3: Fit the data into first iteration of Simplex Method
             BV      CB      XB      Y1      Y2     S1      S2     S3     Min. Ratio
              S1      0       2       1      1      1       0      0     2/1 = 2(KR) 
              S2      0      10       5      2      0       1      0       10/5 = 2
              S3      0      12       3      8      0       0      1       12/3 = 4
                             Zj       0      0
                             Cj       5      3
                            Zj – Cj   -5     -3
                                         (KC)
          Therefore,    Z = C  X
                             B  B
                          = (0×2) + (0×10) + (0×12)
                          = 0




                                           LOVELY PROFESSIONAL UNIVERSITY                                   49
   49   50   51   52   53   54   55   56   57   58   59