Page 58 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 58

Unit 3: Linear Programming Problem – Simplex Method




          Step 2: Fit the data into a matrix form.                                              Notes
                   Y 1  Y 2  S  1  S  2  S 3     x 1  
                   x  x  x   x  x       x  
                    1  2  3   4  5       2    12 
                                                  
               A    1  1  1  0  0    X     x 3    B   10 
                                                  
                    5  2  0  1   0      x  4     12 
                                         
                    3  8  0  0   1      x 5  
          Step 3: First iteration of Simplex Method.

              BV       CB      XB      Y1      Y2     S1   S2    S3      Min. Ratio
              S1       0       12      1        1     1    0     0        12/1 = 12
              S2       0       10      5        2     0    1     0      10/5 = 2(KR)?
              S3       0       12      3        8     0    0     1        12/3 = 4
                               Zj      0        0
                               Cj      5        3
                             Zj  – Cj   –5     –3
                                                  ( KC)

          Therefore,    Z = C X
                             B  B
                          = (0 × 12) + (0 × 10) + (0 × 12) = 0

          Step 4: Second iteration of Simplex Method.
             BV    CB       XB        Y1         Y2       S1   S2   S3    Min. Ratio
             S1    0    12 –2(1) = 10   1–1(1) = 0   1 – 0.4(1) = 0.6   –   –   –   10/0.6 = 16.67
             y1    5     10/5 = 2   5/5 = 1    2/5 = 0.4   –   –   –      –2/0.4 = 5
             S3    0    12 – 2(3) = 6   3 – 1(3) = 0   8 – 0.4(3) = 6.8   –   –   –   6/6.8 = 0.88(KR) ?
                            Zj         5          2
                            Cj         5          3
                          Zj – Cj      0         –1
                                                 ( KC)
          Therefore,    Z = C X
                             B  B
                          = (0 × 10) + (5 × 2) + (0 × 6) = 10
          Step 5: Third iteration of Simplex Method.

             BV   CB         XB          y1         y2       S1    S2   S3   Min. Ratio
             S1    0   10 –0.88 (0.6) = 9.47   0   0.6 –1 (0.6) = 0   -   -   -   -
             y1    5   2 –0.88 (0.4) = 1.698   1   0.4 –1 (0.4) = 0   -   -   -   -
             y2    3      6/6.8 = 0.88   0       6.8/6.8 = 1   -   -     -      -
                             Zj          5          3
                             Cj          5          3
                            Zj – Cj      0          0

          Therefore,    Z = C X
                             B  B
                          = (0 × 9.47) + (5 × 1.698) + (3 × 0.88)
          Therefore, maximum value of Z = 10.88




                                           LOVELY PROFESSIONAL UNIVERSITY                                   53
   53   54   55   56   57   58   59   60   61   62   63