Page 61 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 61

Operations Research




                    Notes          Solution:
                                   Step 1: Convert the minimization problem into maximisation case by changing the signs of the
                                         decision variables in the objective function.

                                         Therefore, ‘Z’ = x  + 2x  [Subject to constraints]
                                                       1   2
                                   Step 2: Convert the inequalities into equalities by adding slack variables.
                                              – x  + 3x  + x  = 10
                                                1    2  3
                                              x  + x  + x  = 6
                                               1  2   4
                                              x  – x  + x  = 2
                                               1  2   5
                                         Where x , x  and x  are slack variables.
                                                3  4    5
                                   Step 3: Fit the data into a matrix form.


                                              Y 1  Y 2  S 1  S 2  S  3     x  1  
                                               x  x  x  x  x       x  
                                               1  2  3   4  5       2    10 
                                                                            
                                          A     1  3  1  0  0    X     x  3    B   6  
                                                                            
                                               1  1  0  1   0       x  4      2  
                                                                    
                                               1  1  0  0  1       x  5  
                                   Step 4: First iteration of Simplex Method.

                                      BV       CB      XB       Y1      Y2      S1    S2   S3      Min. Ratio
                                       S1       0      10       –1      3       1      0    0    10/3 = 3.3 (KR)?
                                       S2       0       6       1       1       0      1    0       6/1 = 6
                                       S3       0       2       1       –1      0      0    1      –½ = – 0.5
                                                       Zj       0       0
                                                       Cj       1       2
                                                      Zj – Cj   –1      –2
                                                                   ( KC)
                                   Therefore,               Z = C X
                                                                 B  B
                                                               0 + 0 + 0 = 0

                                   Step 5: Second iteration of Simplex Method.
                                     BV   CB      XB          Y1           Y2       S1   S2   S3   Min. Ratio
                                     y2   2    10/3 = 3.33   –1/3 = 0.33   3/3 = 1               3.33/–0.33 = –10.09
                                     S2   0   6 – 3.33 (1) 2.67   1 – 1(–0.33) (1) =   1–1(1)  = 0 = 1.33             2.67/1.33 = 2.00
                                                              2.67                                  (KR)
                                     S3   0   2 – 3.33 (–1) =   1–(–0.33) (–1) =   –1–1 (–1) = 0            5.33/0.67 = 8.00
                                                 5.33         0.67
                                                  Zj         –0.66          2
                                                  Cj           1            2
                                                 Zj – Cj     –1.66          0
                                                              ( KC)
                                   Therefore,               Z = C X
                                                                 B  B
                                                             = (2 × 3.33) + (2 × 2.67) + (0 × 5.33)
                                                             = 6.66 + 0 + 0 = 6.66





          56                                LOVELY PROFESSIONAL UNIVERSITY
   56   57   58   59   60   61   62   63   64   65   66