Page 62 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 62

Unit 3: Linear Programming Problem – Simplex Method




          Step 6: Third iteration of Simplex Method.                                            Notes
            BV    CB         XB                Y1         Y2   S1   S2   S3    Min.
                                                                               Ratio
             y2   2    3.33 – 2(–0.33) = 3.99   –0.33 – 1(–0.33) = 0   1   –   –   –   –
             y1   1      2.67/1.35 = 2     1.33/1.33 = 1   0   –     –    –     –
             S3   0    5.33 – 2(0.67) = 3.99   0.67 – 1(0.67) = 0   0   –   –   –   –
                             Zj                1          2    –
                             Cj                1          2
                            Zj – Cj            0          0    –     –

          Max.                     Z = C X
                                        B  B
                                     = (2 × 3.99) + (1 × 2) + (0 × 3.99)
                                     = 7.98 + 2 + 0
                                     = .98

          Therefore, min.          Z = –9.98


                 Example:
               Minimise ‘Z’ = – x  – 3x  + 2x  [Subject to constraints]
                             1    2   3
                          3x  – x  + 3x   7
                            1   2   3
                            – 2x  + 4x   12
                                1   2
                        – 4x  + 3x  + 8x   10
                           1    2   3
                        Where, x , x , x   0     [Non-negativity constraints]
                               1  2  3
          Solution:
          Step 1: Conversion of the minimization case into maximisation case.

                 Therefore, Maximise Z = – x  + 3x  – 2x  [Subject to constraints]
                                        1   2    2
          Step 2: Convert of the inequalities into equalities by adding slack variables.
                 Therefore,     3x  – x  + 3x  + x  = 7
                                  1  2   3   4
                                 – 2x  + 4x  + x  = 12
                                    1    2  5
                             – 4x  + 3x  + 8x  + x  = 10
                                1   2    3  6
                 Where, x , x  and x  are slack variables.
                         4  5    6
          Step 3: Fit the data into matrix form.
                                                x  
                      Y 1  Y 2  Y 3  S  1  S  2  S 3      1  
                                              x 2  
                                                        7
                       x  1  x  2  x 3  x 4  x  5  x     x     
                                                        
                  A    3  1  3  1  0  0    X     3     B   1
                                                        
                                              x 4     
                                                        0
                      2  4  0  0  1   0      x     
                      4  3  8  0  0   1       5  
                                               
                                                x 6  




                                           LOVELY PROFESSIONAL UNIVERSITY                                   57
   57   58   59   60   61   62   63   64   65   66   67