Page 225 - DMTH201_Basic Mathematics-1
P. 225

Basic Mathematics – I




                    Notes              ™ z  lim ( ) g ( )˘=  x  lim ( ) lim ( ) = x  ± l  m
                                                   ±
                                                              x ±
                                                f È
                                                 x
                                                                     g
                                                             f
                                             x Æ  a  Î  ˚  x Æ  a  xÆ a
                                         z  lim ( ) ( )˘= ™  Î f È  x  g  x  ˚  lim ( )lim ( ) =  f  x  g  x  l m
                                             x Æ  a      x Æ  a  xÆ a
                                                        f
                                                f ( ) x  lim ( ) x  l
                                                                           g
                                       ™ z  lim    =  xÆ a  =  , Provided  lim ( ) x π 0 0
                                                        g
                                             xÆ a g ( ) x  lim ( ) x  m  xÆ a
                                                     xÆ a
                                   7.8 Keywords
                                   Limits and Function Values: If the limit of a function f as x approaches c exists, this limit may not
                                   be equal to f(c). In fact, f(c) may not even be defined.
                                   Polynomial Functions: If f(x)is a polynomial function and c is any real number, then  lim f(x) =
                                   f(c). In other words, the limit is the value of the polynomial function f at x = c.  x→ c
                                   7.9 Self Assessment
                                   1.  If f(x) = x  + 5x + 3,  lim  then value of f(x) is
                                               2
                                                       h→ 0
                                       (a)  0                            (b)  1
                                       (c)  3                            (d)  9

                                   2.  Value of lim   (x −  3)     is equal to
                                               x→ 3     x −  3 
                                       (a)  ∞                            (b)  1
                                       (c)  –2                           (d)  –∞
                                                1
                                               
                                   3.   limx 2  sin    is equal to
                                                x
                                        x→ 0   
                                       (a)  0                            (b)  –1
                                       (c)  –∞                           (d)  ∞
                                                        x
                                                1 2x
                                                +  2  If   is rational
                                           x
                                   4.  If f  () =   4             then f(x) will be
                                                 +
                                                        x
                                                1 x   If   is rational
                                       (a)  1/2                          (b)  –1/2
                                       (c)  1                            (d)  –1
                                                1
                                              
                                           x
                                   5.   lim cos   is equal to
                                                x
                                        x→ 0  
                                       (a)  ∞                            (b)  –∞
                                       (c)  –1/2                         (d)  0
                                           ( )
                                   6.   lim − x  euqal to
                                             2
                                        x→∞
                                       (a)  ∞                            (b)  –∞
                                       (c)  ∞ 2                          (d)  –∞ 2
                                   7.  f(x) = x  – 2 of x < 1 lim f(x) is equal to
                                             2
                                       (a)  1                            (b)  2
                                       (c)  –1                           (d)  –2








          218                              LOVELY PROFESSIONAL UNIVERSITY
   220   221   222   223   224   225   226   227   228   229   230