Page 286 - DMTH201_Basic Mathematics-1
P. 286

Unit 10: Logarithmic Differentiation




          Multiply both sides of this equation by y, getting                                    Notes
                                            2lnx  3x 2  tanx  3 ln(sec )
                                                                 x
                                                           x
                                     y = y
                                                       x
                                                                         x
                                                  3 2ln x  3x  2  tan x  3 ln(sec )
                                                                   x
                                        = x ln x (sec )  x
                                                x
                                                              x
          (Combine the powers of x.)
                                        = x (ln x  1) (sec ) x  3x  2ln x  3x 2  tan x  3 ln(sec ) x
                                                                      x
          Logarithmic Differentiation

                                  df               x
                                                 x
                                         :
                 Example: Determine    of  f x  cos( )
                                  dx
                                                x
                                              x
                                   f  ( ) =  cos( )
                                     x
                                                  x
                                ln f  ( )  = ln cos( )x
                                    x
                                                  x
                                ln f  ( )  = x  ln cos( )
                                    x
                             d             d
                               ln f  ( )  =   x  ln f ( )
                                                    x
                                    x
                            dx             dx
                                   1 df                 1
                                                                 x
                                    .   = ln cos( )x  x       sin( )
                                                         x
                                   f dx               cos( )
                                   1 df
                                                         x
                                    .   = ln cos( )x  x  tan( )
                                   f dx
                                    df
                                                           x
                                                  x
                                        = f  ln cos( )  x  tan( )
                                    dx
                                    df          x                 x
                                              x
                                                       x
                                                                      x
                                                                x
                                        =  cos( ) ln cos( )  x  cos( ) tan( )
                                    dx
                                             And thus
                                    df       x                x
                                                               x
                                                                    x
                                        = cos ( )ln cos( )x  x  x  cos ( )tan( )
                                    dx
                 Example: Differentiate y = (2x) sin x .
          Solution:
          Alternate 1
                 y = (2x) sin x  = e sin x ln 2x ,


                  y   '   e  sin  x ln  2  x      cos  x ln  2  x   (    sin  x  )   2  ( 2  x  sin  x     cos  x ln  2  x   sin  x   .

                                                  )
                                           2  x                  x

                                           LOVELY PROFESSIONAL UNIVERSITY                                   279
   281   282   283   284   285   286   287   288   289   290   291