Page 289 - DMTH201_Basic Mathematics-1
P. 289

Basic Mathematics – I




                    Notes          2.           ln y = ln (sec x) tan x  = tan x ln sec x,
                                                   y'                sec  x tan  x
                                                      sec  2  x ln sec x tan  x  sec 2  x ln  sec  x tan  2  , x
                                                   y                   sec x
                                                  y’ = y(sec  x ln sec x + tan  x) = (sec x) tan x  (sec  x ln sec x + tan  x).
                                                                                       2
                                                                                                    2
                                                           2
                                                                        2
                                                                                       x
                                                                                              2
                                          Example: Find y’ using logarithmic differentiation if y = x /(x – 1) .
                                   Solution:
                                                  x x
                                          ln  y  ln     xln  x  2ln (x  1),
                                                 (x  1)  2
                                           y'      x   2           2
                                              ln  x        ln x  1   ,
                                           y       x  x  1        x  1
                                                       2      x x          2
                                          y'  y ln  x  1           1 ln  x    .
                                                      x  1  (x  1) 2      x  1

                                          Example: Let   3.  f  (x  ) (x  x  ) x    and  g (  ) x  x (x x ) .
                                   1.  Which of these functions grows more rapidly for sufficiently large x?

                                   2.  Differentiate them.
                                   Solution:
                                                        x        2
                                            f  (x )  (x x x  ) x  x (x  ) )  2  x x  2  x  2 )
                                                                (x 2
                                             (x
                                   1.  a.   lim  g f (x ) )  x lim  (x  x )  x lim  x  x  x lim  x (x  x  ) x )  x lim  x x x 2  1 ( x x  2 )  0,
                                                                         (x 2
                                                                                      1 ( x
                                                 lim
                                                            lim
                                                                        x
                                                                     lim
                                                                                lim
                                                                                             0,
                                        lim
                                                                                   x
                                      a.
                                        x
                                                                (x
                                                      (x
                                        x   g (x )  x  x (x  ) x )  x  x (x  ) x )  x  x
                                                     x         x
                                                         x
                                                    2
                                        because   lim x  x 2  1 (  x x  2 2 )    .  So  g   grows   more   rapidly.
                                        because lim x  x  1 (  x  )  .  So g  grows  more rapidly.
                                      b.  Using logarithmi c  differenti ation  we  have :
                                   2.  b.    Using   logarithmi    c  differenti ation   we   have :
                                                    x
                                                               2
                                                           x
                                        ln  f  (x )  ln (x x x ) x  x ln  x x  x ln  , x
                                                               2
                                        ln  f  (x )  ln (x  )  x ln  x  x ln  , x
                                        f ' (x )     x 2 2
                                         f ' (x )  2x ln  x  x  x (2 ln  x  1),
                                         f  (x )  2x ln  x  x  x (2 ln  x  1),
                                         f  (x )     x
                                                              x            2
                                                            x x
                                        f ' (x ) )  f f (x )x (2 ln  x x  1) (x x ) x (2 ln  x x  1)  x x  1 1 (2 ln  x x  1),
                                                                          x 2
                                          (x
                                                                          x
                                                )x
                                                        1) (x
                                                                              (2 ln
                                                                 (2 ln
                                        f '
                                                                      1)
                                                              ) x
                                                                                   1),
                                               (x
                                                  (2 ln
                                                   x
                                                       x
                                                 (x
                                        ln  g (x )  ln  x (x  ) x )  x ln  , x
                                                       x
                                        ln  g (x )  ln  x  x ln  , x
                                                   x
                                        ln ln  g g (x ) )  ln (x ln  ) x ) x  x ln  x ln ln  , x  , x
                                                    x
                                                ln
                                        ln
                                                                 ln
                                          ln
                                             (x
                                                             x ln
                                                  (x ln
                                                          x ln
                                           g' (x ) )   x x  1 1         1 1
                                            (x
                                           g'
                                                   ln
                                                                ln
                                        g g (x ) ln  g g (x ) )  ln  x x  x x  x ln  x x  ln  x x  1 1  x ln  x x  , ,
                                           ) ln
                                                          x ln
                                         (x
                                                                       x ln
                                               (x
                                                                 1
                                       g  (  ) x '  g (x )(  gln  (x ))   ln  x  1
                                                               x ln  x
                                                  x ln
                                              x (x x  ) x  x ln  x  1  1
                                                               x ln  x
                                                x            1
                                              x x  x  ln 2  x ln  x  .
                                                             x
          282                               LOVELY PROFESSIONAL UNIVERSITY
   284   285   286   287   288   289   290   291   292   293   294