Page 123 - DMTH202_BASIC_MATHEMATICS_II
P. 123
Basic Mathematics-II
Notes dy
Example: Solve x 2 y 1
dx
Solution:
dy
y
2
Here x 1
dx
dy dx
or 2
1 y x
Integrating, we get
1
–log (1 – y) = + c
x
1
or log (1 – y) = – c
x
1 1
c
x where e =A.
1–y = e x Ae ; -c
1
or y = x
1 Ae
which is the required solution.
2
Example: Solve (xy + x)dx+(yx +y)dy = 0.
2
Solution:
2
2
Here x(y +1)dx + y (x +1)dy = 0
xdx ydx
Or 2 2 0
x 1 y 1
Integrating, we get
1 1
2
2
log (x + 1) + log (y + 1) = c
2 2
2
or log (x + 1)+ (y + 1) = 2c
2
2
2
2
or (x +1) (y +1) = e e = A, which is the required solution.
Example:
dy 3x 2y 2 2y
Solve e x e
dx
Solution:
dy 3x 2y 2 2y
Here e x e
dx
2y
or e dy e 3x x 2 dx
118 LOVELY PROFESSIONAL UNIVERSITY