Page 126 - DMTH202_BASIC_MATHEMATICS_II
P. 126

Unit 9: Solution of Differential Equation




          Integrating both sides, we get                                                        Notes

                                              
                          
                   sin y dy   y cosdy   2 x log xdx   xdx c
                                                  
                            I  II     II  I
                                               x   1 x 2    x 2
                        y
                               
                                            
          or      cosy   sin y   1.sin y dy   2 log x     dx   
                                               2   x  2    2
                                      x 2    1  2   x 2
                        y
          or      cosy   sin y   cosy   2   logx   x       c
                                       2     4    2
          or      y sin y   x 2  log x   .
                                c
          which is the required general solution.


                 Example: Show that the curve in which the angle between the tangent and the radius
          vector at every point is one half of the vectorial angle is a cardioid.
          Solution:

          If the angle between the radius vector and the tangent at any point be j, and q the vectorial angle,
          then according to the given condition.

                     
                   
                     2
                             
          or      tan   tan  
                           2
                           
                   d    
                 r   tan
                   dr    2
                  dr    
          or         cot d 
                  r     2
          Integrating, we get

                               
                  logr   2logsin     log 2c
                              2
                              
                                 
                           c
          or      logr   log 2 sin  2    
                                2
                                
                r = c (1 – cos ),
          which is the required equation of the curve. Clearly this represents a cardioid.


                 Example: Solve the differential equation (1 + x)ydx + (1 + y)xdy = 0
          Solution:

          The given equation can be written as
                       dy
                               y
                 (1 y )x    (1 x )   0.
                       dx


                                           LOVELY PROFESSIONAL UNIVERSITY                                   121
   121   122   123   124   125   126   127   128   129   130   131