Page 124 - DMTH202_BASIC_MATHEMATICS_II
P. 124
Unit 9: Solution of Differential Equation
Integrating, we get Notes
1 2y 1 3x x 3
e e c
2 3 3
or 3e 2y 2 e 3x x 3 c , where c 1 6c
1
which is the required solution.
Example:
2 dy
Solve 1x y 1
dx
Solution:
Putting 1x y u
dy du
we get 1
dx dx
dy du
or 1
dx dx
Thus the given equation reduces to
u 2 du 1 1
dx
du 1 u 2
or 2
dx u
u 2
or 2 du dx
1 u
1
or 1 2 du dx
1 u
Integrating, we get
x
u tan 1 u c
or 1x y tan 1 1x y x c
,
or y tan 1 1x y c where c = c – 1
1
1
which is the required solution.
Remark:
Different equations of the form
dy
ax by c …..(1)
dx
LOVELY PROFESSIONAL UNIVERSITY 119