Page 32 - DMTH202_BASIC_MATHEMATICS_II
P. 32

Unit 2: Integration by Partial Fraction




          comparing the coefficients of x both side                                             Notes
          A + B = 0                                                               ....(1)
          – B + C = 1                                                             ....(2)
          4A – C = 0                                                              ....(3)
          adding (1) and (2) we get
          A + C = 1                                                                ...(4)
          Adding (3) and (4) we get

          5A=1 a=1/5

                       1
                  B  
                       5
                       6
                  0rC 
                       5

                      x        1    1     1  x   6
          Hence        2   dx       dx    2 
                 (x   1)(x   4)  5 (x  1)  5 x   4

                   1   1     1   x      6   1
                       dx     2   dx     dx
                                           2
                   5 x  1   5 x   4   5 x   4
                   1          1 1           6    1 x
                                     2
                    log(x  1)   . log(x   4)   tan  
                   5          5 2          5x  2  2
                   1          1           3
                                              
                                    2
                                              1
                    log(x  1)   log(x   4)   tan x /2
                   5          10          5
                                  4
                                      2
                                        x
                                 x   x    1
                 Example: Evaluate    3  2  dx
                                    x   x
          Solution:
          Here the integrand is an improper fraction therefore we divide the numerator by the denominator
          and obtain
            4
               2
                 x
           x   x    1  x   1     x   1
                        x      x 
              3
             x   x 2     x   x  2  x  2 (x   1)
                           3
          How, let
            x   1  A  B   C
                       
           x 2 (x   1)  x  x 2  x   1
           x   1   Ax (x  1) B (x   1) Cx  2
                         
                                
          on comparing the coefficients of x, we get
          A + C = 0                                                               ....(1)
          B = 1
          –A–B = 1
          –A = 2   A = – 2




                                           LOVELY PROFESSIONAL UNIVERSITY                                   27
   27   28   29   30   31   32   33   34   35   36   37