Page 33 - DMTH202_BASIC_MATHEMATICS_II
P. 33

Basic Mathematics-II




                    Notes           4   2
                                   x   x    1       2  1  2  
                                          x
                                              dx     x            dx
                                       3
                                      x   x  2        x  x  2  x   1
                                            1               dx
                                      xdx   2   dx    x  2  dx   2 
                                            x              x   1
                                     x  2      1
                                        2log x     2log(x   1)
                                     2         x
                                     x  2  1    x
                                          2log
                                     2  x      x   1




                                     Did u know?  The  integrand  is  an improper  rational  function.  By  “long  division”  of
                                     polynomials, we can rephrase the  integrand as the sum of a polynomial and a proper
                                     rational function ”remainder”:

                                                              2
                                                             x   2
                                          Example: Evaluate       3  dx
                                                          (x  1)(x  2)
                                   Solution:

                                           2
                                         x
                                                  y
                                               x
                                   Let  y       2
                                   And dx   dy
                                           2
                                      (y   2)   2
                                             dy
                                          
                                      (y   2 1)y  3
                                       2
                                      y   4y   6
                                            dy
                                      y  5 (y  1)
                                           2
                                          y   4y   6  A  B  C  D
                                   How let   3         2    3  
                                           y  (y   1)  y  y  y  y   1
                                    2
                                                              
                                   y   4y    Ay  2 (y   1) By (y   1) C (y   1) Dy  3
                                                     
                                          6
                                                                      
                                   Putting y = 0
                                   6 = C  C = 6
                                   Again putting y = – 1
                                   1 – 4 + 6 = – D  D = – 3
                                                3
                                    2
                                                         2
                                          6
                                                     
                                                                     
                                   y   4y    A (y   y  2 ) B (y   y ) 6(y   1) 3y 3
                                                              
                                   Comparing the coefficients of y for A – 3 = 0 A = 3
                                   A + B = 1 B = – 2
                                             2
                                            x   2         3    2      6      3  
                                   Here          3  dx          2           dx
                                         (x  1)(x   2)    (x   2)  (x   2)  (x  2)  x   1  




          28                                LOVELY PROFESSIONAL UNIVERSITY
   28   29   30   31   32   33   34   35   36   37   38