Page 33 - DMTH202_BASIC_MATHEMATICS_II
P. 33
Basic Mathematics-II
Notes 4 2
x x 1 2 1 2
x
dx x dx
3
x x 2 x x 2 x 1
1 dx
xdx 2 dx x 2 dx 2
x x 1
x 2 1
2log x 2log(x 1)
2 x
x 2 1 x
2log
2 x x 1
Did u know? The integrand is an improper rational function. By “long division” of
polynomials, we can rephrase the integrand as the sum of a polynomial and a proper
rational function ”remainder”:
2
x 2
Example: Evaluate 3 dx
(x 1)(x 2)
Solution:
2
x
y
x
Let y 2
And dx dy
2
(y 2) 2
dy
(y 2 1)y 3
2
y 4y 6
dy
y 5 (y 1)
2
y 4y 6 A B C D
How let 3 2 3
y (y 1) y y y y 1
2
y 4y Ay 2 (y 1) By (y 1) C (y 1) Dy 3
6
Putting y = 0
6 = C C = 6
Again putting y = – 1
1 – 4 + 6 = – D D = – 3
3
2
2
6
y 4y A (y y 2 ) B (y y ) 6(y 1) 3y 3
Comparing the coefficients of y for A – 3 = 0 A = 3
A + B = 1 B = – 2
2
x 2 3 2 6 3
Here 3 dx 2 dx
(x 1)(x 2) (x 2) (x 2) (x 2) x 1
28 LOVELY PROFESSIONAL UNIVERSITY