Page 40 - DMTH202_BASIC_MATHEMATICS_II
P. 40
Unit 3: Integration by Parts
e n sinx e n sinxdx Notes
n
e n sinx ( cos )e x e n ( cos )dx
x
e n sinx e n cosx e n cosxdx
e n (sinn cos ) I
n
1
x
e n (sinn cos )Ans .
2
Example:
x
1
1
1. sin x dx sin x x dx
1 x 2
x
1
x sin x dx
1 x 2
1 2x
1
x sin x dx
2 1 x 2
1
x sin x In 1- x 2 C
Example:
x 2 cos2xdx
2 sin2x sin2x
x
x 2 . dx
2 2
x 2 ( cos2 ) ( cos2 )
x
x
sin2x x dx
2 2 2
1 1 sin2x
x 2 sin2x x cos2x
2 2 4
Example:
In x dx
Set
f = ln x; dg = dx
Deduce
dx
df ;g x C
x
Any value of C can be used here.
Here and in the other examples, we select C = 0.
Get
In x dx x In x dx
x (In x 1)
LOVELY PROFESSIONAL UNIVERSITY 35