Page 42 - DMTH202_BASIC_MATHEMATICS_II
P. 42
Unit 3: Integration by Parts
Deduce Notes
x
df (n 2)tan sec n 2 x dx ;g tan (except for n 2, when df 0).
x
Use
2
2
tan x sec x 1
to rewrite
n
g df (n 2) sec x sec n 2 x n 2
Get
G ( ) sec n 2 x tan x n 2 G n G n 2
n
Reorganize
n
n 1 G sec n 2 x tan x n 2 G n 2
Iterate this to get
1 n 2 (n 2)(n 4)
2
4
n
G ( ) sec n 2 x tan x cos x cos x
n 1 (n 1)(n 3) (n 1)(n 3)(n 5)
When n is even this discontinues automatically; when n is odd, the outcome is in our table of
simple trigonometric integrals for n = 1:
G (1) In (sec x tan ) x
Example:
sqrt(1+x )
2
First method
2
To evaluate: 1 x dx
Substituting
x = tan y
You obtain
3
2
1 x dx sec y dy
G (3)
Using the above example you obtain
y
sec y tan y In (sec y tan )
G (3)
2
2
x 1 x In x 1 x 2
G (3)
2
Alternate method by substitution
2
To evaluate: 1 x dx
LOVELY PROFESSIONAL UNIVERSITY 37