Page 52 - DMTH202_BASIC_MATHEMATICS_II
P. 52
Unit 4: Definite Integral
lim h [2n h (1 2 3 (n 1)] Notes
h 0
)
( n n 1) nh (nh h
lim h 2n h lim h 2nh
h 0 2 h 0 2
lim h [4 (2 h )] [ nh 2]
h 0
4 2 6.
Example:
Evaluate the following definite integrals as limit of sums:
4 3 4
2
2
2
x
1. (x ) x dx 2. (2x 5 )dx 3. (2x 3x 1)dx
1 1 2
Solution:
4
2
1. (x ) x dx
1
2
x
f ( ) x , x a 1,b 4andnh b a 4 1 3
a
f ( ) f (1) 0
2
2
)
)
( f a h f (1 h ) (1 h (1 h ) 1 h 2 2h 1 h h h
2
2
2
2
2
h
h
h
h
( f a 2 ) f (1 2 ) (1 2 ) (1 2 ) 1 2 h 4h 1 2h 2 h 2h
2
2
2
2
2
h
h
h
h
( f a 3 ) f 91 3 ) (1 3 ) (1 3 ) 1 3 h 6h 1 3h 3 h 3h
:
:
2
h
h
h
h
( f a n 1 ) f (1 n 1 ) (1 n 1 ) (1 n 1 )
2
2
2
2
1 (n 1) h 2(n 1)h 1 (n 1)h (n 1) h (n 1)h
b
x
a
h
f
h
)
h
Now, f ( )dx lim h [ ( ) ( f a h ( f a 2 ) ( f a 3 ) ( f a n 1 )]
h 0
a
2
h
)
4 (x ) x dx lim [ (1) f (1 h f (1 2 ) f (1 3 )
h
f
h
h 0
h
1 f (1 n 1 )]
2
2
2
2
2
i. lim [0 h 2 h 2 h 3h
h
h
h 0
2
2
(n 1) h (n 1) ]
h
2
2
2
2
2
h
h
lim [ (1 2 3 (n 1) h (1 2 3 (n 1))]
h 0
2 (n n 1)(2n 1) ( n n 1)
lim h h h
h 0 6 2
nh (nh h )2nh h nh (nh h
lim
h 0 6 2
)
3(3 h )(6 h ) 3(3 h
lim [ nh 3]
h 0 6 2
3(3)(6) 3(3) 9 27
9
6 2 2 2
LOVELY PROFESSIONAL UNIVERSITY 47