Page 54 - DMTH202_BASIC_MATHEMATICS_II
P. 54

Unit 4: Definite Integral




                                               2
                                  h
                                             h
                       h
                                                         h
                ( f a n  1 )   f  (2 n   1 )   2(2 n  1 )   3(2 n  1 ) 1                 Notes
                  
                             
                                         
                                                    
                                                           
                                            2
                                                  
                             
                           2(4 2(n   1)h   (n   1) h  2 ) 6 3(n  1)h  1
                                               
                                            2
                             
                           15 (n   1).11h   (n   1) .2h  2
                     b
                                           )
                                   a
                                                           h
                       x
                               h
                                                   h
                                         
                                 f
               Now,    f  ( )dx  lim [ ( )   ( f a h   ( f a   2 )   ( f a   3 )
                     a       h 0
                                                   ( f a n   1 )]
                                                        
                                                            h
                  4
                     2
                  (2x   3x  1)dx
                  2
                                                h
                         lim [ (2)   f  (2 h   f (2 2 )   f (2 3 )   f  (2 n   1 )]
                            h
                              f
                                      
                                                       
                                              
                                         )
                                                         h
                                                                       h
                                                                  
                         h  0
                                                        2
                                           2
                                                                        2
                                                           2
                                                
                                
                                    
                            h
                          lim [15 15 11h   2h  15 2.11h   2 .2h   15 3.11h   3 .2h  2
                                                                
                          h 0
                                                      15 (n  1)11h  (n   1) .2h 2 ]
                                                                         2
                                                          
                                                          2
                                                                              2
                                                            2
                                                                   2
                                                                2
                                       
                                                       
                                    h
                                                         h
                                          
                            h
                          lim [15n   11 (1 2 3    (n  1)) 2 (1  2   3    (n  1) )]
                          h 0
                                      ( n n   1)  2 (n n   1)(2n   1)
                          lim h  15n   11h    2h
                          h 0        2             6      
                                                              )
                                                    
                                                           
                                   11          nh (nh h )(2nh h 
                          lim h  15nh   nh (nh h 
                                           
                                             )
                          h 0    2                 3        
                                                 
                                            
                                                   )
                                        2(2 h )(4 h        16  172
                         lim 30 11(2 h              30 22   
                                       )
                                                        
                               
                                    
                         h 0               3             3   3
                 Example:
                               2
                                 3
          Evaluate as limit of sums   x   1dx
                               1
          Solution:
           2
             3
             x   1dx
           1
                  3
                                            
                                              
            f ( )   x   1,a   1,b   2andnh   b a   2 1 1
                                      
              x
             f  ( )   f (1)   2
              a
                                            2
                                                3
                               3
                                                             2
                      
             
                            
                         
                              )
                )
                                     
                                   
                                                      
            ( f a h   f (1 h ) (1 h   1 1 3h   3h   h   1   2 3h  3h   h 3
                                                       3
                                                  2
                                                      3
                                  3
                                               2
                h
                              
                      
                         h
                          
            ( f a   2 )   f  (1 2 ) (1 2 )   1 1 2.3h   2 .3h   2 h   1
                                     
                                        
                                h
                          2
                             2
                                 3
                   
                  2 2.3h   2 .3h   2 h  3
                                               2
                                  2
                                                  2
                                                      3
                                                        3
                h
                                h
                         h
                      
                                        
                           
                              
                                      
            ( f a   3 )   f  (1 3 ) (1 3 )   1 1 3.3h   3 .3h   3 .h   1
                          2
                                3
                             2
                   
                  2 3.3h   3 .3h   3 h  3
                 :
                 :
                                                                          3
                                                                        3
                                                                 2
                                                              2
                                         3
                  h
                             h
                                       h
             
                         
                                               
            ( f a n  1 )   f  (1 n   1 ) (1 n  1 )   1 1 (n  1)3h  (n  1) .3h   (n  1) h   1
                                            
                                  
                               
                                              3
                                    2
                                       2
                    2 (n   1).3h   (n   1) .3h   (n  1) .h  3
                     
                b
                  x
                            f
                                              h
                          h
                              a
          Now,    f  ( )dx   lim [ ( )   ( f a h   ( f a   2 )   ( f a   3 )   ( f a n  1 )]
                                                                
                                                      h
                                    
                                      )
                                                                     h
                a       h 0
                                           LOVELY PROFESSIONAL UNIVERSITY                                   49
   49   50   51   52   53   54   55   56   57   58   59