Page 58 - DMTH202_BASIC_MATHEMATICS_II
P. 58
Unit 4: Definite Integral
4 Notes
x
2 dx lim [ (2) f (2 h f (2 2 ) f (2 3 ) f (2 n 1 )]
)
h
h
h
h
f
2 h 0
3h
h
h
lim [4 4.2 4.2 2h 4.2 4.2 (n 1)h ]
h 0
nh
4(2 1) h
nh
lim h lim 4(2 1)
h
h
h 0 2 1 h 0 2 1
h
2
lim h 4 (2 1)
h
h 0 2 1
x
1 a 1
4(3) lim log a
log 2 h 0 x
12
log 2
2
x
2. 5 x
1
x
x
f ( ) 5 ,a 1,b 2 and nh b a 2 ( 1) 3
a
f ( ) f ( 1) 5 1
1
)
( f a h f ( 1 h e 1 h 5 .5 h
)
1
( f a 2 ) f ( 1 2 ) 5 1 2h 5 .5 2h
h
h
1 3h
h
h
( f a 3 ) f ( 1 3 ) 5 1 3h 5 5
:
:
1
h
( f a n 1 ) f ( 1 n 1 ) 5 1 (n 1)h 5 5 (n 1)h
h
b
)
a
f
x
h
h
h
Now, f ( )dx lim [ ( ) ( f a h ( f a 2 ) ( f a 3 ) ( f a n 1 )]
h
a h 0
2
x
h
h
h
)
5 dx lim [ ( 1) f ( 1 h f ( 1 2 ) f ( 1 3 ) f ( 1 n 1 )]
h
f
h 0
1
1
2h
3h
1
1
1 h
1
h
lim [5 5 5 5 .5 5 .5 5 5 (n 1)h ]
h 0
nh
1
5 (5 1) h
3
1
lim h lim 5 (5 1)
h
h
h 0 5 1 h 0 5 1
h
2
lim h 4 (2 1)
h
h 0 2 1
1 1 124
2
5
log 5 5 5log 5
Example:
Evaluate the following definite integrals as limit of sums:
b /4 2 2
1. sinxdx 2. cosxdx 3. sin xdx
a 0 6
Solution:
b
1. sinxdx
a
f(x) = sin x and nh = b – a
f(a) = sina
LOVELY PROFESSIONAL UNIVERSITY 53