Page 61 - DMTH202_BASIC_MATHEMATICS_II
P. 61

Basic Mathematics-II




                    Notes
                                             h                     
                                         nh  2        2nh   2h   
                                   lim         cos         sinnh 
                                   h   0    2  sinh   3  2      
                                                                   

                                                              
                                          h  1     2  3    2h    
                                     lim     cos         sin 
                                        6  sinh 2   3   2     3 
                                                               
                                       1   2       1   1    3     3
                                       cos  sin                 
                                     6  2   3    3  6  2   2    2    6  8




                                      Task  Evaluate the following definite integrals as limit of sums:
                                            /2
                                                  x
                                     1.      (x   cos )dx
                                           0
                                            /6
                                                     x
                                     2.      (cosx   sin )dx
                                           0
                                   Self Assessment


                                   Fill in the blanks:
                                   1.  Let f(x) be a  continuous real valued function defined on the closed interval [a, b].  Divide
                                       the interval [a,b] into n equal parts each of width h by points a + h, a+2h, a + 3h, …, a+(n – 1)
                                              h h    h 
                                               
                                              
                                       h. Then,          ................................ .
                                                 ntimes
                                   2.  If n increases, the number of rectangles will increases and the ................................of rectangles
                                       will decrease.
                                   3.  The area of region bounded by curve y =................................, x-axis and the ordinates x = a,
                                                                                                       
                                                                                                     b a
                                                             )
                                                           
                                                                             h
                                                                                      
                                                                                            h
                                       x = b is  lim [ ( )h f a   ( f a h   ( f a   2 )  ( f a  3 )    ( f a n  1 ] where h
                                                                     h
                                              n                                                      n
                                   4.  The area in the case of limit as a sum is also the ................................value of any area which
                                       is among that of the rectangles beneath the curve and that of the rectangles over the curve.
                                        b
                                           x
                                   5.     f ( )dx   lim h  ................................ where  nh = b – a.
                                                h 
                                                  0
                                        a
                                   6.  The  process  of  evaluating  a  definite  integral  by  using  the  definition
                                        b
                                                       a
                                                     f
                                                                               h
                                                                       h
                                                               )
                                           x
                                                                                              h
                                                   h
                                                                                         
                                                             
                                          f ( )dx   lim [ ( )   ( f a h   ( f a   2 )   ( f a   3 )    ( f a n  1 ]  is called integration
                                                h  0
                                        a
                                       from first principles or integration  by ................................  method or  integration as the
                                       limit of a sum.
                                                                     2
                                                              ( n n 
                                                                 1)
                                                          3 
                                            3
                                         3
                                               3
                                   7.   1   2   3     (n 1)       = ................................ .
                                                              2   
                                                  
                                   8.   cosa   cos(a h ) cos(a   2 )     cis [a (n 1) ]
                                                                              h= ................................
                                                             h
                                                     
          56                                LOVELY PROFESSIONAL UNIVERSITY
   56   57   58   59   60   61   62   63   64   65   66