Page 63 - DMTH202_BASIC_MATHEMATICS_II
P. 63
Basic Mathematics-II
Notes 2 1 log|3x 2| 2 1 1 4
(ii) I dx log|4| log| 5| log
1 3x 2 3 1 3 3 5
/2 /2
cos2x 1
(iii) I sin2xdx cos2 cos2(0)
0 3 1 2 2
1 1 1
cos cos 0 1 1 ( 2) 1
2 2 2
/4
/4
x
(iv) I tanxdx log|sec | log sec log|sec0|
0 0 4
1
log 2 log1 log 2 log 2
2
/4 /4
x
(v) I secxdx log|secx tan | log sec 4 tan 4 log|sec0 tan0|
0 0
log| 2 1| log|1 0| log| 2 1|
1 1 1
1
1
1
(vi) I 2 dx sin x sin (1) sin (0)
0 1 x 0 4
1
1 x
1
1
1
(vii) I 2 dx tan x tan (1) tan (0)
0 1 x 0 4
3 x 1 3 2x 1 3
2
(viii) I 2 dx 2 dx log|x 1|
2 x 1 2 x 1 2 2
2
1 1 10 1
[log|10| log|5|] log log 2
2 2 5 2
Example:
Evaluate the following integrals:
4 dx
(i) 0 x 4
2
4 dx
(ii) 0 2
x 2x 3
2 dx
(iii)
0 4 x x 2
1
2
(iv) x x dx
0
Solution:
4 dx 4 dx
(i) 0 x 4 0 x (2) 2
2
2
4
1 x 2 1 2 1 1 5
log log log log
4 x 2 3 4 6 5 4 3
4 dx 4 dx 2 4
1
2
(ii) 0 4 x x 2 0 (x 1) 2 log|x x |2x 3
0
5 3 3
log|5 27| log|1 3| log log|7 4 3|
1 3
58 LOVELY PROFESSIONAL UNIVERSITY