Page 65 - DMTH202_BASIC_MATHEMATICS_II
P. 65

Basic Mathematics-II




                    Notes
                                            1        A    B
                                                       
                                        (x   1)(x   2)  x  1  x   2
                                                   
                                          1   A (x   2) B (x   1)
                                       Putting x = – 1, we get A = 1

                                       Putting x = – 2, we get B = – 1
                                           2    dx       2   1  1 
                                                              
                                        I   1   (x  1)(x   2)    1     x   1 x    dx
                                                                  2
                                          log|x  1| log|x  2|   2
                                                 
                                                            1
                                                                    3     2     9
                                              
                                                          
                                          (log 3 log 4) (log 2 log 3) log   log   log
                                                    
                                                                
                                                                    4     3     8
                                           3  dx
                                   (ii)  I     x  2 (x  1)
                                           0
                                           1     A  B    C
                                                    
                                        x  2 (x   1)  x  x  2  x   1
                                                    
                                          1   Ax (a   1) B (x   1) Cx  2
                                                           
                                       Putting x = – 1, we get C = 1
                                       Putting x = 1, we get A = – 1
                                           3   dx     3   1  1  1 
                                        I   1   x 2 (x   1)    1        x 2    x  1   dx
                                                         x
                                                             3
                                                 1          
                                              x
                                          log| |   log|x  1|
                                                 x           0 
                                                1               1       
                                          log 3     log 4   log|1|  log|2| 
                                         
                                                        
                                                3               1       
                                                1               2     2
                                          log 3     log 4 1 log 2     log
                                                       
                                                         
                                                3               3     3
                                          Example: Evaluate the following integrals:
                                          /4
                                               x
                                   (i)  0   sin2 cos3xdx
                                           /4
                                              3
                                   (ii)  0   cos xdx
                                           /4
                                   (iii)  0   1 sin 2x dx
                                             
                                          /2
                                   (iv)  0   1 cosxdx
                                             
                                           sin x
                                   (v)  0   sin x  cosx  dx
                                   Solution:
                                           /4
                                                 x
                                   (i)  I    sin2 cos3xdx
                                           0





          60                                LOVELY PROFESSIONAL UNIVERSITY
   60   61   62   63   64   65   66   67   68   69   70