Page 69 - DMTH202_BASIC_MATHEMATICS_II
P. 69

Basic Mathematics-II




                    Notes                                  4
                                                          
                                                  (2x  1) 5/2  
                                          {60   6  5}   
                                                     5
                                                      .2  
                                                     2     2 
                                                   9  5/2  5 5/2    243     57
                                          {60   6  5}          60   6  5     5  5     5
                                                    5   5            5       5
                                        e  x   1 x logx 
                                             
                                   7.    e         dx
                                        1     x   
                                         e 2  1    e 2  1
                                             .1dx    2  dx
                                                        x
                                         2  log x  2  (log )
                                                e 2  2           2
                                           1     e   1   1      e  1
                                            .x        . .xdx      dx
                                                         2
                                                                     x
                                                       x
                                         log x  e   2  (log ) x  2  (log ) 2
                                            e 2  e    e  2  1  e 2  1
                                                     
                                            2           dx   e   2  dx
                                                                       x
                                                            x
                                           log e  log e    e  (log )  (log )
                                           e 2     e  2
                                               e     . e
                                         2log e    2
                                                   b
                                                     3
                                          Example: If  x dx   0
                                                   a
                                        b      4   4
                                      4
                                     x       b   a
                                          0       0
                                      4      4   4
                                        a
                                         4
                                      4
                                             a
                                     b   a    b
                                        b     2
                                          2
                                   Also   x dx 
                                        a     3
                                        b
                                      3
                                     x    2  b  3  a 3  2
                                                              3
                                                          3
                                                   b   a   2
                                      3   3   3  3   3
                                        a
                                   When a = b, then
                                       3
                                    3
                                                          a
                                   a – a = 2 which is absurd     b
                                                   3
                                       3
                                                          3
                                          3
                                                                 a
                                                      2
                                     a   a   2   2a    a   1    1
                                   thus b = 1
                                   Hence, a = – 1 and b = 1
                                                    k  dx    
                                          Example: If     2    , Find the value of k.
                                                      
                                                    0  2 8x  16
                                     1  k  dx  
                                           
                                     8  1   2  16
                                       0    x
                                        4
                                     1  k  dx    
                                         2   
                                     8  0    2  2
                                         1
                                             x
                                          2 
          64                                LOVELY PROFESSIONAL UNIVERSITY
   64   65   66   67   68   69   70   71   72   73   74