Page 69 - DMTH202_BASIC_MATHEMATICS_II
P. 69
Basic Mathematics-II
Notes 4
(2x 1) 5/2
{60 6 5}
5
.2
2 2
9 5/2 5 5/2 243 57
{60 6 5} 60 6 5 5 5 5
5 5 5 5
e x 1 x logx
7. e dx
1 x
e 2 1 e 2 1
.1dx 2 dx
x
2 log x 2 (log )
e 2 2 2
1 e 1 1 e 1
.x . .xdx dx
2
x
x
log x e 2 (log ) x 2 (log ) 2
e 2 e e 2 1 e 2 1
2 dx e 2 dx
x
x
log e log e e (log ) (log )
e 2 e 2
e . e
2log e 2
b
3
Example: If x dx 0
a
b 4 4
4
x b a
0 0
4 4 4
a
4
4
a
b a b
b 2
2
Also x dx
a 3
b
3
x 2 b 3 a 3 2
3
3
b a 2
3 3 3 3 3
a
When a = b, then
3
3
a
a – a = 2 which is absurd b
3
3
3
3
a
2
a a 2 2a a 1 1
thus b = 1
Hence, a = – 1 and b = 1
k dx
Example: If 2 , Find the value of k.
0 2 8x 16
1 k dx
8 1 2 16
0 x
4
1 k dx
2
8 0 2 2
1
x
2
64 LOVELY PROFESSIONAL UNIVERSITY