Page 67 - DMTH202_BASIC_MATHEMATICS_II
P. 67

Basic Mathematics-II




                    Notes                    1            1
                                                            
                                                       x
                                                                     x
                                              (sinx   cos )   ( cosx   sin )
                                        I     2        2            dx
                                            0        sinx   cosx
                                                  
                                         1     1  cosx   sinx
                                           1dx           dx
                                         2      2  sinx   cosx
                                           0      0
                                                             
                                         1    1              
                                          x    log|sinx   cos |
                                                            x
                                         2   0   2           0 
                                         1        1
                                                               
                                          |   0|  log|sin   cos | log|sin0 cos0| 
                                                                 
                                                                          
                                         2        2
                                           1                 
                                            log| 1| log|1|     
                                         2  2                 2
                                          Example: Evaluate the following integrals:
                                        1
                                          x
                                   1.    xe dx
                                        0
                                        2
                                   2.    logxdx
                                        1
                                                         /2
                                          /2               /2
                                   3.     x cosxdx   sinx       sinxdx
                                         0             0   0
                                        
                                             x
                                   4.    cos2 logsinxdx
                                        0
                                          /6
                                               2
                                              x
                                            
                                   5.     (2 3 )cos3xdx
                                        0
                                        4  x   x
                                           2
                                   6.         dx
                                        2  2x   1
                                        e  x   1 x logx 
                                             
                                   7.    e    x    dx
                                        1         
                                   Solution:
                                        1
                                          x
                                   1.    xe dx
                                        0
                                               1
                                            1    x
                                           x
                                          xe    e dx
                                            0  
                                               0
                                                   1
                                                  x
                                                             0
                                            1
                                                            ]
                                                          
                                         [1.e   0] e    [e e   e e   1 1
                                                                     
                                                                
                                                      e
                                                
                                                   0 
                                        2
                                   2.    logxdx
                                        1
                                                  2
                                               2   1
                                               1 
                                          log .x    .xdx
                                            x
                                                  1  x
          62                                LOVELY PROFESSIONAL UNIVERSITY
   62   63   64   65   66   67   68   69   70   71   72