Page 59 - DMTH202_BASIC_MATHEMATICS_II
P. 59
Basic Mathematics-II
Notes f(a + h) = sin(a+h)
f(a + h) = sin(a+2h)
f(a + 3h) = sin) a + 3h)
h
( f a n 1 ) sin(a n 1 )
h
b
h
)
Now, f ( ) dxlinh | (0) ( f a h ( f a 2 ) ( f a 3 ) .... ( f a n 1 )|
x
f
h
h
a
b
h
h
h
sinxdx lim [sin a sin(a h ) sin(a 2 ) sin(a 3 ) ... sin(a (n a ) )
h
a
n 1 nh
sin a h sin
2 2
lim h
h 0 h
sin
2
h nh h b a
lim h sin a sin
h 0 h 2 2
sin
2
2 b a h b a
lim h 2sin a sin
h
h 0 sin 2 2
2
2a b a b a
2sin sin
2 2
b a b a
2sin sin cos cosb
2 2
/4
2. cosxdx
0
i. f(x) = cos x, = 0, b =/4, nh = b – a /4
ii. f() = f(0) = cos 0
iii. f(a + h) = f(h) = cos h
iv. f(a+2h) = f(2h) = cos = 2h
v. f(a+3h) = f(3h) = cos 3 h
( f a n 1 ) ( f n ah cos(n a )h
h
)
b
h
)
h
f
x
a
h
Now, f ( ) lim ( ) ( f a h ( f a 2 ) ( f a 3 ) .... ( f a n 1 )|
a
b
h
f
h
h
h
cosxdx lim [ (0) f ( ) f (3 ) ......... ( f n 1) ]
a
n 1 nh
cos 0 sin
2 2
lim h
h
h 0 sin
2
h nh h nh
lim h cos sin
h
h 0 sin 2 2
2
54 LOVELY PROFESSIONAL UNIVERSITY