Page 79 - DMTH202_BASIC_MATHEMATICS_II
P. 79
Basic Mathematics-II
Notes 1 y 1 y 1
0 2 e 2cos y dy 0 2 e dy 0 2 2 cos y dy
Here is the substitution and converted limits for the second term.
1
u y du dy dy du
1
y 0 u 0 y u
2 2
Here is the integral.
1 1 2
y
y
0 2 e 2cos y dy 0 2 e dy 0 2 cos u du
1
2 2 2
y
e sin u
0 0
1 2 2
0
2
e e sin sin 0
2
1 2
e 1
2
0 z
(d) 3sin 5cos z dz
3 2
This integral will need two substitutions. So first divide the integral so we can accomplish
a substitution on each term.
0 z 0 z 0
3sin 5cos z dz 3sin dz 5cos z dz
3 2 3 2 3
There are the two substitutions for these integrals.
z 1
u du dz dz 2du
2 2
z u z 0 u 0
3 6
v z dv dz dz dv
2
z v z 0 v
3 3
Here is the integral for this problem.
0 z 0
3sin 5cos z dz 6 sin u du 5 2 cos v dv
3 2 6 3
0 x
6cos 5sinu 2x
v
6 3
5 3
3 3 6
2
3
6
2
Example: Evaluate each of the following.
5 4t
(a) 5 2 dt
2 8t
74 LOVELY PROFESSIONAL UNIVERSITY