Page 81 - DMTH202_BASIC_MATHEMATICS_II
P. 81

Basic Mathematics-II




                    Notes              The limits are a little strange in this case, but that will occur sometimes so don’t get too
                                       energized regarding it.  Here is the substitution.
                                                            x
                                            
                                        u   1 e 2    du   e dx
                                                                    0
                                                                        
                                        x   0               u   1 e   1 1 0
                                                                  
                                                                           
                                                                                 
                                                                  
                                        x   In 1        u   1 e In 1     1  1   
                                       The integral is then,
                                         In  1   x  2    
                                         0   e  cos 1 e   dx    0   cos u du
                                                                 
                                                            sin   u
                                                                 0
                                                           sin   sin 0     0
                                         6    4
                                         e  In t
                                   (b)   2    dt
                                        e   t
                                       Here is the substitution and converted limits for this problem.
                                                                     1
                                                 u   In t       du   dt
                                                                     t
                                                              2
                                                                                              6
                                        t   e 2       u   In e   2     t   e 6    u   In e   6
                                       The integral is,
                                         e 6  In t  4  6  4
                                              dt   2   u du
                                            t
                                                      6
                                                  1
                                                   u  5
                                                  5   2
                                                  7744
                                                 
                                                    5
                                           sec 3P tan 3P 
                                         9             dP
                                   (c)      3
                                              
                                         12  2 sec 3P 
                                       Here  is the  substitution  and  converted  limits  and  don’t  get too  thrilled about  the
                                       substitution.  It’s a little chaotic in the case, but that can take place on occasion.
                                                                                                  1
                                                                                          
                                                                                             
                                                               P
                                                                     P
                                        u   2   sec(3 )  du   3 sec (3 ) tan (3 )dP    sec 3P tan 3P dP  du
                                                 P
                                                                                                  3
                                                                       
                                                                 
                                        P                  u   2 sec      2   2
                                           12                          4 
                                                                       
                                        P                  u   2   sec      4
                                           9                           3 
                                       Here is the integral,
                                                            sec 3P tan 3P   1  4    1
                                                          9                        3
                                                                      dP   2   u  du
                                                               
                                                            3  2 sec 3P   3   2
                                                         12
                                                                               4
                                                                              2
                                                                           1
                                                                            u 3
                                                                           2
                                                                               2  2
                                                                           1   2       2  
                                                                             4    2    2  3  
                                                                               3
                                                                           2            
                                       So, not only was the substitution chaotic, but we also a untidy answer, but again that’s life
                                       on occasion.
          76                                LOVELY PROFESSIONAL UNIVERSITY
   76   77   78   79   80   81   82   83   84   85   86