Page 27 - DMTH201_Basic Mathematics-1
P. 27

Basic Mathematics – I




                    Notes          Similarly, by adding and subtracting the other two formulae, we get
                                                     2cos A cos B =  cos(A + B) + cos(A  B)                …(3)
                                   and               2sin A sin B =  cos(A  B)  cos(A + B)                 …(4)
                                   We can also reference these as
                                                     2sin A cos B =sin(sum) + sin(difference)
                                                     2cos A sin B =sin(sum)  sin(difference)

                                                     2cos A cos B =cos (sum) + cos(difference)
                                                     2sin A sin B =cos(difference)  cos(sum)

                                   Transformation of sums or differences into products

                                   In the above results put
                                                          A + B =  C
                                                           A – B =  D

                                   Then A= C + D/2 and B = C – D/2 and (1), (2), (3) and (4) becomes
                                                     sin C + sin D =  2sin C + D/2 cos C – D/2
                                                     sin C – sin D =  2cos C + D/2 sin C – D/2
                                                    cos C + cos D =  2cos C + D/2 cos C – D/2
                                                    cos C – cos D =  2sin C + D/2 sin C – D/2

                                   Further applications of addition and subtraction formulae

                                   We shall prove that
                                                                   2
                                                            2
                                   (i)   sin(A + B) sin(A  B) = sin  A  sin  B
                                                                   2
                                                                                 2
                                                                           2
                                                             2
                                   (ii)   cos(A + B) cos(A  B) = cos  A  sin  B or cos  B   sin  A
                                   Proof: (i) sin(A + B) sin(A  B)
                                                      =  ( sin A cos B + cos A sin B) (sin A cos B  cos A sin B)
                                                                      2
                                                                2
                                                          2
                                                                           2
                                                      =  sin  A cos  B  cos  A sin  B
                                                          2
                                                                  2
                                                      =  sin  A(1  sin  B)  (1  sin  A) sin B
                                                                                  2
                                                                             2
                                                                 2
                                                          2
                                                      =  sin  A  sin  B
                                   (ii)   cos(A + B) cos(A  B)
                                                      =  (cos A cos B  sin A sin B) (cos A cos B + sin A sin B)
                                                      =  cos  A cos  B  sin  A sin  B
                                                                      2
                                                           2
                                                                           2
                                                                2
                                                                   2
                                                           2
                                                                             2
                                                                                   2
                                                      =  cos  A(1  sin  B)  (1  cos  A) sin  B
                                                      =  cos  A  sin  B
                                                           2
                                                                 2
                                                      =  (1  sin  A)  (1  cos  B)
                                                                         2
                                                              2
                                                                 2
                                                           2
                                                      =  cos  B  sin  A
          20                               LOVELY PROFESSIONAL UNIVERSITY
   22   23   24   25   26   27   28   29   30   31   32