Page 31 - DMTH201_Basic Mathematics-1
P. 31
Basic Mathematics – I
3
2
Notes = 2cos A – cos A – 2cos A(1 – cos A)
3
3
= 2cos A – cos A – 2cos A + 2cos A
3
cos A = 4cos A – 3cosA ....(2)
3
(c) tan 3A in terms of tan A
Putting B = 2A in the formula
tan (A + B) =
tan (A + 2A) =
=
=
= …(3)
3
3
(d) Formulae for sin A and cos A
3
Q sin3A = 3sinA – 4sin A
4sin A = 3sinA – sin3A
3
or sin A =
3
Thus, we have derived the following formulae:
sin3A = 3sinA – 4sin A
3
cos3A = 4cos A – 3cosA
3
tan3A =
3
sin A =
3
cos A =
Example 4: If verify that
3
(i) sin3A = 3sinA – 4sin A
(ii) cos3A = 4cos A – 3cosA
3
(iii) tan3A =
24 LOVELY PROFESSIONAL UNIVERSITY