Page 149 - DMTH202_BASIC_MATHEMATICS_II
P. 149

Basic Mathematics-II




                    Notes
                                           d   Pdx     Pdx
                                   i.e.,     ye    Qe
                                          dx
                                   Integrating, we have

                                                 ye Pdx   Qe Pdx  dx  ,                             …….(2)
                                                                 c
                                   which is the required general solution.



                                     Notes

                                     1.   e Pdx  is known as Integrating factor, in short, I.F.

                                     2.   Linear differential equation is commonly known as Leibnitz’s linear equation.


                                          Example:
                                            dy
                                               y
                                   Solve  cosx   sin x   1
                                            dx
                                   Solution:
                                   Given equation can be written as

                                                 dy
                                                     y
                                                     tanx   secx                                        ….(1)
                                                 dx
                                   Here P = tan x,  Q = sec x.

                                           F
                                         I . .   e tanxdx   e logsecx   sec .
                                                                x
                                    Solution of (1) is
                                                    x
                                          y . secx sec . secxdx  c
                                                      c
                                   or     y  secx  tan x  . Ans.

                                          Example:

                                            2 dy        2
                                   Solve   1 x     2xy 4x   0.
                                              dx
                                   Solution:
                                   Given equation is
                                                 dy    2x     4x 2
                                                         y      .                                       ….(1)
                                                 dx   1 x 2  1 x  2

                                              2x          4x  2
                                   Here   P     2  ,  Q    2  .
                                             1 x        1 x

                                                      2x
                                                        dx      2
                                         I . .   e Pdx   e  1 x 2   e  log (1 x  )   (1 x 2 ).
                                                                       
                                           F
          144                               LOVELY PROFESSIONAL UNIVERSITY
   144   145   146   147   148   149   150   151   152   153   154