Page 144 - DMTH202_BASIC_MATHEMATICS_II
P. 144

Unit 10: Homogeneous Equations




                                                                                                Notes
                         dY  2X   3Y
          Then (1) becomes         .
                         df   4X  Y
                             dY       dv
                                 v
          Putting Y = vX, so that     X  .
                             dX       dX
                      dv  2  3v
                 v   X  
                      dX   4   v

                                    v
                    dv  2   3v  2    v 2
                              v
          or      X          
                   dX   4  v      4   v
                     v  4       dX
          or                dv   
                    1v    2v    X

                     2       5        1
          or                    dv    dx
                    3   2v    3   1v     x
          Integrating, we have

                   2          5
                   log   2v    log    1v    log X   logC
                   3          3
                       Y
          Replacing v by   , we have
                       X

                                      Y   2X     Y   X  
                  3logX   3logC   2log      5log   
                                       X          X  
          On restoring the value of x & y, we get
                            1  
                  5log y   x       2log   2y  x  2   3log c .
                      
                            2  

                       1  5
                   y x
                      
          or           2  2   c 3  ;
                   2y  x    2
                                         1
                                    3
          Putting  y = 1 at x = 1, we have  c     .
                                        25
                    1    5
                y x
                   
          Thus      2       1
               (y  2x  2) 2  2 5
                                   1
                            5
                        2
          or     (y+2x–2)  = –2  (y–x   ) 5
                                   2
                  =  (2x–2y+1) 5
                        2
          or     (y+2x–2)  = (2x–2y+1) 5
          which is the required particular solution.



                                           LOVELY PROFESSIONAL UNIVERSITY                                   139
   139   140   141   142   143   144   145   146   147   148   149