Page 142 - DMTH202_BASIC_MATHEMATICS_II
P. 142

Unit 10: Homogeneous Equations




                                                                                                Notes
                 Example:

                         dy  6x   2y   7
          Solve                                                                  ….(1)
                         dx  2x   3y   6
          Solution:
          Putting x = X – h , y – Y + k,

                                  k
                                   
                  dy  6  x h   2(y   ) 7
                                    ,
                          h
                            
                                 k
                  dx  2(x   ) 3(y   ) 6
                                   
                         dY  6X   2Y   6h   2k  7
          or                                 ,                                   ….(2)
                         dX  2X   3Y   2h   3k   6
          Choosing h and k such that (2) becomes homogeneous,
          i.e., 6h – 2k – 7 = 0 and 2h + 3k – 6 = 0
                       3
          which gives  h    , k = 1.
                       2
           The equation (2) becomes

                  dY  6X   2Y
                     
                  dX  2X   3Y
                             dY       dv
                                 v
          Putting Y = vX, so that     X  .
                             dX       dX
                    dv  6   2v
                 v    
                    dx  2   3v
                  dx   1   6v   4
          or            2       dv
                  x    2 3v   4v   6
          Integrating, we have

                         1
                  log X    log  2v  2   4v   6   logc
                         2
                                    1
          or      log x   log   3v 2   4v     6  2   logc

          or      X  3v 2   4v   c
                            6

                             1
          or      x  3v 2   4v     6  2   c

                                            1
                             2         2
                    3    3  y   1     y   1       c
          or       x        x  3       4  x  3      6 
                     2
                  
                           2       2    
                                          


                                           LOVELY PROFESSIONAL UNIVERSITY                                   137
   137   138   139   140   141   142   143   144   145   146   147