Page 142 - DMTH202_BASIC_MATHEMATICS_II
P. 142
Unit 10: Homogeneous Equations
Notes
Example:
dy 6x 2y 7
Solve ….(1)
dx 2x 3y 6
Solution:
Putting x = X – h , y – Y + k,
k
dy 6 x h 2(y ) 7
,
h
k
dx 2(x ) 3(y ) 6
dY 6X 2Y 6h 2k 7
or , ….(2)
dX 2X 3Y 2h 3k 6
Choosing h and k such that (2) becomes homogeneous,
i.e., 6h – 2k – 7 = 0 and 2h + 3k – 6 = 0
3
which gives h , k = 1.
2
The equation (2) becomes
dY 6X 2Y
dX 2X 3Y
dY dv
v
Putting Y = vX, so that X .
dX dX
dv 6 2v
v
dx 2 3v
dx 1 6v 4
or 2 dv
x 2 3v 4v 6
Integrating, we have
1
log X log 2v 2 4v 6 logc
2
1
or log x log 3v 2 4v 6 2 logc
or X 3v 2 4v c
6
1
or x 3v 2 4v 6 2 c
1
2 2
3 3 y 1 y 1 c
or x x 3 4 x 3 6
2
2 2
LOVELY PROFESSIONAL UNIVERSITY 137