Page 137 - DMTH202_BASIC_MATHEMATICS_II
P. 137

Basic Mathematics-II




                    Notes          Integrating, we get

                                                    1 v 
                                          log x      v 2v    1  dv
                                                  1  1  
                                                   v    2v     dv
                                                        1
                                                     1
                                               log v   log 2v     1 logc 1
                                                     2

                                   or     2log x   2log v  log  2v  1  log ,c   2log c  1 log   c

                                               2 2
                                              x v  
                                   or     log        lgc
                                               2v   1  
                                            2 2
                                           x v
                                   or           c
                                          2v   1
                                              y  2  
                                            2
                                           x    2  
                                               x     c                y  
                                                                       v
                                   or                                 x   
                                             y
                                          2    1
                                             x
                                            
                                           xy 2
                                   or
                                          2y   x
                                                   
                                   or     xy 2   c 2y x 
                                   which is the required general solution.


                                                                     2
                                          Example: Solve  xdy y dx   x 2   y dx .
                                                          
                                   Solution:

                                                  dy  y   x 2   y 2
                                   Here                                                                  ….(1)
                                                  dx      x

                                                     dy  y   x 2   y 2
                                   Putting y = vx, so that   
                                                     dx      x
                                    (1) reduces to
                                              dv         2
                                          v   x    1 v
                                                       
                                                  v
                                              dx
                                           dv       2
                                                  
                                   or     x    1 v
                                           dx
                                            dv    dx
                                   or          2    .
                                            1  v  Dx



          132                               LOVELY PROFESSIONAL UNIVERSITY
   132   133   134   135   136   137   138   139   140   141   142