Page 135 - DMTH202_BASIC_MATHEMATICS_II
P. 135
Basic Mathematics-II
Notes
Example: Solve x (x – y) dy +y dx = 0
2
Solution:
dy y 2
Here
dx x y x
dy dy
v
Putting y = vx, so that x
dx dx
dx v 2
v x
dx v 1
dy v 2 v
v
x
dx v 1 v 1
v 1 dx
or dv
v x
1 1
or 1 dv dx
v x
Integrating, we get
(v – log v) = log x + log c
v
or log e – log v = log cx
e v
or log logcx
v
v
e = vcx
y
c
or e y /x . .x
x
1 y /x
or y e
c
1
or y c e y /x ; where c 1
1 c
which is the required general solution.
2
Example: Solve (x – y ) dx = 2xy dy
2
Solution:
dy x 2 y 2
Here ……(1)
dx 2xy
130 LOVELY PROFESSIONAL UNIVERSITY