Page 135 - DMTH202_BASIC_MATHEMATICS_II
P. 135

Basic Mathematics-II




                    Notes
                                          Example: Solve x (x – y) dy +y  dx = 0
                                                                 2
                                   Solution:

                                        dy    y 2
                                   Here   
                                        dx  x  y x 

                                                     dy      dy
                                                         v
                                   Putting y = vx, so that     x
                                                     dx      dx
                                              dx   v 2
                                         v  x  
                                              dx  v  1

                                           dy   v 2      v
                                                     v
                                         x        
                                           dx  v  1    v  1
                                          v   1  dx
                                   or         dv  
                                            v     x

                                             1    1
                                   or      1    dv   dx
                                             v    x
                                   Integrating, we get
                                          (v – log v) = log x + log c
                                              v
                                   or     log e  – log v = log cx
                                              e  v  
                                   or     log      logcx
                                               v  
                                          v
                                         e  = vcx
                                                 y
                                               c
                                   or     e y /x   . .x
                                                 x
                                             1 y /x
                                   or     y   e
                                             c
                                                            1
                                   or     y   c e  y  /x  ; where  c 1  
                                              1             c
                                   which is the required general solution.




                                                       2
                                          Example: Solve (x  – y ) dx = 2xy dy
                                                           2
                                   Solution:
                                                  dy  x 2   y 2
                                   Here                                                                 ……(1)
                                                  dx   2xy






          130                               LOVELY PROFESSIONAL UNIVERSITY
   130   131   132   133   134   135   136   137   138   139   140