Page 139 - DMTH202_BASIC_MATHEMATICS_II
P. 139

Basic Mathematics-II




                    Notes          Solution:
                                              x    
                                             e y   1   x  
                                        dx       y  
                                   Here                                                              ……….(1)
                                        dy       x  y
                                              1   e
                                                     dx      dv
                                                         v
                                   Putting x = vy, so that     y
                                                     xy      xy
                                    (1) reduces to

                                              dv   e  v  1 v 
                                          v  y       v
                                              dy    1  e

                                           dv    e v   1 v   v  e v
                                                         v
                                   or     v        v       v
                                           dy     1  e      1   e
                                          dy  1  e  v
                                   or            v  dv
                                          y  v  e

                                   Integrating, we get
                                                             v
                                          log c – log y = log (v + e )
                                   or     log y + log (v + e ) = log c
                                                       v
                                   or     y(v+e) = c
                                   or     x + y e  = c.
                                               e/y
                                   which is the required general solution.


                                       !
                                                                             y
                                     Caution   When  a differential  equation  contain     a number  of  times,  solve  it  like  a
                                                                             x
                                                                   y
                                     homogeneous equations by putting    v .
                                                                   x



                                     Notes  The function f does not rely on x & y individually but only on their proportion
                                     y/x or x/y.




                                      Task  Solve the following differential equation:

                                         dy      dy
                                     y   x    y  .
                                             x
                                         dx      dx








          134                               LOVELY PROFESSIONAL UNIVERSITY
   134   135   136   137   138   139   140   141   142   143   144