Page 138 - DMTH202_BASIC_MATHEMATICS_II
P. 138

Unit 10: Homogeneous Equations




          Integrating, we get                                                                   Notes
                    
                          
                  log v   1 v 2   log x  log c
          or      v   1 v  2   cx
                       

                  y      y 2                 y  
          or        1   2   cx        v    
                  x      x                   x  

          or      y   x  2   y  2   cx  2

          which is the required solution.
                                        2  y     2 y
                                   y
                                                         
                                                   x
                                       y
                 Example: Solve   x tan     sec    dx   sec    dy   0
                                             x
                                                         x
                                   x
                                                   
          Solution:
                                 2 y       
                                           y
                                   
                             y sec     tan  
                                      x
                         dy              
                                           x
                                   x
                           
          Here           dx          2 y                                          …..(1)
                                       
                                 x sec   
                                       x
                                       
                    y
          Putting  v   i.e., y = vx
                    x
                 dy     dv
                    v
          So that     x
                 dx     dx
          Equation (1) reduces to
                      dy    tan v
                  v   x   
                         v
                              2
                      dx    sec v
                    2
                  sec v   dx
          or           dv    0
                  tanv    dx
          Integrating, we get
                 log (tan v) + log x = log c
          or     log (x tan v) = log c
                       y
                                                     y
                           c
          or      x tan    ;                   v   
                       x
                                                     x
          which is required solution.
                                 x  y    x  y    x  
                 Example: Solve   1   e   dx   e   1     dy   0  .
                                            y  






                                           LOVELY PROFESSIONAL UNIVERSITY                                   133
   133   134   135   136   137   138   139   140   141   142   143