Page 138 - DMTH202_BASIC_MATHEMATICS_II
P. 138
Unit 10: Homogeneous Equations
Integrating, we get Notes
log v 1 v 2 log x log c
or v 1 v 2 cx
y y 2 y
or 1 2 cx v
x x x
or y x 2 y 2 cx 2
which is the required solution.
2 y 2 y
y
x
y
Example: Solve x tan sec dx sec dy 0
x
x
x
Solution:
2 y
y
y sec tan
x
dy
x
x
Here dx 2 y …..(1)
x sec
x
y
Putting v i.e., y = vx
x
dy dv
v
So that x
dx dx
Equation (1) reduces to
dy tan v
v x
v
2
dx sec v
2
sec v dx
or dv 0
tanv dx
Integrating, we get
log (tan v) + log x = log c
or log (x tan v) = log c
y
y
c
or x tan ; v
x
x
which is required solution.
x y x y x
Example: Solve 1 e dx e 1 dy 0 .
y
LOVELY PROFESSIONAL UNIVERSITY 133